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Abstract 
 

Although P2P systems are usually used for information 
exchange between peers, they have either protected 
peers’ anonymity, or required transacting peers to trust 
each other implicitly. Both these approaches are 
vulnerable to attacks by malicious peers who could abuse 
the P2P system to spread viruses, incorrect, or damaging 
information. 

In this paper, we propose an approach for trust 
management in P2P systems. We introduce an optimistic 
role-based model for trust amongst peers and show that it 
is scalable, dynamic, revocable, secure and transitive. 
Our proposed solution permits asymmetric trust 
relationships that can be verified by any peer in the 
system through a simple, low-cost algorithm. This paper 
introduces a metric known as iComplex that combines a 
peer’s trust value for each of its roles into a single, 
relative, probabilistic guarantee of trust. Finally, we 
discuss how our trust model allows peers to revoke 
relationships with malicious peers, and the non-
repudiation of peer relations. 

We use simulations to illustrate the trust value 
distribution amongst peers in the network. Our analysis 
and experiments demonstrates the low-cost involved to 
verify and validate trust values. Lastly, we establish the 
effectiveness of using sum as the aggregation function to 
combine trust values of a peer. 
 

Keywords: Communities, Dynamic Coalitions, Peer-to-
Peer, Trust. 
 

1. Introduction 
 

The emergence of decentralized and dynamic file-
sharing applications, such as Napster [1] and Gnutella [2], 
provided the catalyst that drew a lot of attention to a new 
breed of distributed systems called peer-to-peer (P2P) 
systems. Current peer-to-peer systems are often targeted 
for global information sharing, replicated file storage, and 
searching by using an end-to-end overlay network. 
Although these systems usually involve information 
exchange between peers, they have either protected peers’ 

anonymity [3, 4], or required transacting peers to trust 
each other implicitly [2]. 

Both these approaches are vulnerable to attacks by 
malicious peers who could abuse the P2P system to spread 
viruses, incorrect, or damaging information. Therefore in 
order to enable practical information sharing in such 
decentralized and dynamic systems, a viable trust model 
needs to be incorporated that will allow peers to have 
varying amounts of dynamically changeable trust amongst 
each other. The main challenges that need to be addressed 
are: how to describe if a peer is trustworthy, what low-cost 
verification algorithm can be executed by a peer to 
determine the trust value of some other peer, how are trust 
values about peers exchanged within the system, how can 
dishonest peers be punished. 

In this paper, we propose an approach for trust 
management in P2P systems. We introduce a role-based 
model for trust amongst peers and show that it is scalable, 
dynamic, revocable, secure and transitive. The trust model 
assigns role-based trust values to peers proportional to 
their status in the system. The status of a peer depends on 
its relationships with other peers. Our proposed solution 
permits asymmetric trust relationships that can be verified 
by any peer in the system through a simple, low-cost 
algorithm. Since trust values are proportional to the status 
of a peer, it is essential to ensure that relationships 
between any two peers will be legally binding and have 
non-repudiation; that is peers cannot falsely deny their 
relationship with another peer. However it is equally 
essential that peers have the ability to revoke their 
relationships with malicious peers to punish them for false 
or damaging information. Finally, this paper introduces a 
metric that combines a peer’s trust value for each of its 
roles. The combined trust value is a single, relative, 
probabilistic guarantee that offers peers with a simple, 
verifiable trust metric about other peers in the P2P system. 

Traditionally, many of these functionalities were 
implemented through exhaustive policy lists that needed 
to be created at system design time or through a complex 
predetermined role framework, such as role-based access 
control (RBAC) [5]. In contrast, our trust management 
system is dynamic and requires minimal global 
knowledge. Further, the decentralized nature of our 
algorithms makes it suitable for P2P systems. 

 



1.1. Dynamic Coalitions 
 

The research described in this paper is part of a larger 
project known as Dynamic Coalitions [6]. Dynamic 
Coalitions enables a set of partners to work together while 
sharing information, resources, and capabilities in a 
controlled and accountable fashion. The partners 
themselves are organizations composed of people, 
departments, computational entities, and agents who 
perform tasks consistent with the internal rules of their 
organization. 

Coalitions are supported by several innovative 
techniques such as transitive delegation, cryptographic file 
systems, capacity sandboxing, reverse sandboxing, and 
fine-grained access control. These techniques facilitate 
scalable authentication and revocable authorization of 
agent computations even when they span resources of 
different organizations. In addition, they improve overall 
efficiency by permitting migration of computations to, and 
a caching of services in, partly trusted environments of 
another organization. 
 
1.2. Communities of Peers 
 

In an electronically connected world, people use 
network-addressable1 computing elements (such as a 
desktop personal computer, a laptop computer, a personal 
digital assistant, and so on), which we call peers. Peers 
have comparable roles and responsibilities and are used 
by their owners to communicate information, share or 
consume services and resources with other peers whom 
they know. Every peer belongs to at least one pre-
determined group corresponding to the department or 
organization of its human user. For home users, the 
domain name of an Internet connection is used to identify 
the pre-determined group of the peer. Thus the basic 
construct of P2P systems can be used to implement a 
practical Dynamic Coalition environment where coalitions 
are created between peers in different groups. 

In our research, we investigate a generalization of the 
notion of peer group to a multiplicity of groups (possibly 
overlapping) called peer communities.  While a group is a 
physical collection of objects, a community is a set of 
active members, who are involved in sharing, 
communicating and promoting a common interest. 

Our concept of peer communities is loosely based on 
the idea of “interest groups”, such as Yahoo Groups [7], 
Usenet Newsgroups, or web communities. The user of a 
peer in the system claims to have some interests and 
depending upon the claims of all the peers’ users, 

                                                 
1 We assume that each peer has a static IP address that serves as the 
peer identity. While this assumption is not universally true, it can be 
facilitated through various techniques (dynamic DNS, IPv6, or firewall 
penetrating mechanisms) that are outside the scope of this paper. 

communities are implicitly formed (made up of peers with 
the same or similar interests). Note that communities are 
formed implicitly, i.e. they are self organizing. If a peer in 
New York declares an interest in wombats, and a peer in 
China also declares the same interest, then the two peers 
become part of an implicit, undiscovered community. A 
peer may belong to many different communities and 
communities may overlap. 

 
1.3. Canonical Application 
 

The canonical application that we consider for our 
algorithms is a digital library built out of a collection of 
peers in which each peer owns a set of books that it is 
willing to share with other peers (assume these are non-
copyrighted works). The subjects of the books owned by a 
peer form its set of interests. Peers are implicitly grouped 
into communities based on the common interests they 
share. Because a peer could own books from a variety of 
subjects, we can imagine that a peer could be a member of 
multiple communities. 
 
1.4. Limitations of Our Approach 

 
In terms of limitations, the techniques that we 

developed can only be applied to specific situations, such 
as the digital library application, where the set of interests 
is constrained, well defined and understood by almost all 
the peer members. Our proposed algorithms would place 
individual users into peer communities based on the 
common interests that they share with other peers. A 
generalized peer-to-peer system, where the set of interests 
includes the universe of all possible interests, might not 
contain a single peer that shares common interests with 
other peers. Therefore no communities would form. 

Additionally, in real life, links between peers are not 
always bidirectional. We make this assumption to simplify 
the process of network formation. 

Some of the other problems that are outside the scope 
of this dissertation are: specifying how static IP addresses 
can be used as peer identities; providing more than just 
probabilistic guarantees of trust, therefore the trust 
paradigm is vulnerable to peers that lie infrequently and 
with due measure; describing the channel or protocol of 
communication used by peers; defining the format for the 
interests of a peer, obtaining the interests from a peer; and 
fragmentation of the network after targeted denial-of-
service attacks on certain peers. 
 

2. Terms and Definitions 
 

We argue that peer communities provide an implicit 
and natural organization of peers in structures that can be 
efficiently uncovered or cultivated. In our previous work, 



we provided a motivation for the study of peer-to-peer 
communities and illustrated some scenarios to define and 
discover peer communities [8]. Using simulated models of 
communities, we have gained an insight to the architecture 
of randomly created communities. Our algorithm for the 
discovery of communities allows for the computation of 
Link Weights, a very important value that enables the 
working of all our subsequent algorithms. Link weights 
help determine the membership of a peer in a community. 
They are also used to rank peers in a community for the 
purposes of information dissemination and trust. For a 
detailed understanding of our algorithms for community 
formation, discovery, information dissemination and 
search, we refer readers to [8, 9, 10]. 

In this section, we briefly explain some of the terms 
from our earlier work. First we describe what we mean by 
interests. We then provide a definition of P2P 
communities, followed by a thorough treatment of the 
subject of peer links. Finally at the end of this section we 
define Link Weights. 

 
2.1. Interest Attributes 
 

In our model, interests are represented by attributes, 
which are used to determine the peer communities in 
which a particular peer would participate. There are of 
course privacy and security concerns in using such 
information, so we divide interests into two classes – 
personal and claimed. 

The full set of attributes for a peer is called personal 
attributes. However, for privacy and/or security reasons, 
all these attributes may not be used to determine 
community membership. A peer may also not want to 
reveal some of her personal attributes because she might 
not consider them relevant amongst the peers that she 
knows. Hence, a peer explicitly makes only a subset of 
these attributes public, which are called claimed attributes 
(see Fig. 1). 
 
 

2.2. P2P Communities 
 

Below, we formally define a peer-to-peer community 
based on the attributes of each peer. 

 
PEER-TO-PEER COMMUNITY: The non-empty set N of 
nodes is a peer-to-peer community iff N has a non-null 
signature. 
 
SIGNATURE: Let i be a node and Ci be a set that 
contains attributes claimed by i. Consider a non-empty set 
N of nodes. Then the set resulting from the intersection of 
Ck, for all k ∈ N is called a signature of the set N. 
 

With this definition, given any collection of peers, we 
would be able to tell whether the collection is a peer-to-
peer community or not. 
 
2.3. Peer Links 
 

We observe in projects like HITS [11] and Web 
Communities [12] the concept of self-organized 
communities that form implicitly based on hypertext links 
between web pages. The human creators of the web page 
explicitly place these links typically in order to point 
towards web pages with similar content. This is one of the 
factors that Internet search engines have exploited to 
enhance their search operation. 

We draw an analogy from the above research to 
understand the behavior of peer-to-peer systems. We find 
that peers also regularly link to other peers, in the form of 
relationships (being present in their address book), or 
direct connections (being on the same network), when 
their human owners share something in common. We 
assume that these links are bi-directional communication 
channels that can be established on an as-needed basis. In 
a social network, this is similar to getting in touch with 
people you know when you need something. We refer to 
these end-to-end overlay communication channels as peer 
links.  
 
2.3.1. The Need for Peer Links. Links are not necessary 
to form and manage peer-to-peer communities. However, 
they are needed to to feasibly run low-cost algorithms 
such as community formation and discovery. We therefore 
introduce the notion of a set of neighbors, which are 
directly (1-hop) linked peers. The neighbors of a peer help 
when a peer needs to communicate with other peers that 
are not directly linked to it. 

When node X is born, it needs to have one or more 
logical neighbors. If it has three neighbors, A, B, and C, 
then we say that it has three links, X A, X B, and X C. 
Unlike overlay networks used by Distributed Hash Table 
(DHT) based peer-to-peer systems, our link based 
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Figure 1. Venn diagram of interest attribute 
sets for a peer. I is the universe of all 
attributes; P is the set of personal 
attributes; and C is the set of claimed 
attributes. 
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Figure 2. (left) Peer V compares its claimed 
interest attributes with all 1-hop and 2-hop 
neighbors. (right) As a result of the 
comparison, V calculates Link Weights for 
each claimed interest attribute. 
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Figure 3. The graph above was plotted 
using a log Y-axis. It shows how the number 
of peers that can be reached increases with 
greater depth. The experiment involved a 
10,000 node P2P network. (See Appendix for 
technique used to form P2P networks)  

network is not contingent to node names, but to user 
selected neighbors. Like in social networks, the more links 
a node acquires the more successful it will be in receiving 
information and searching the peer-to-peer network. It is 
the responsibility of each peer to acquire as many 
neighbors as possible. 

First, let us explain a case where links are essential. 
Suppose a node, belonging to domain abc.com claims the 
attribute “baseball”. This node is essentially isolated, 
unless it a priori knows about the other members of the 
baseball community or the other members of the abc.com 
community. There is a need for a “seed” to start the 
community formation and information search needs.  
 
2.3.2. Creating Peer Links. Flooding and querying a 
central server are two solutions to the isolation problem 
described above; however, the first is expensive and the 
second violates the self-configuring tenet of the peer-to-
peer structure.  

A new node X has the following options that solve the 
isolation problem: 

1. Connect to a special bootstrapping node present 
within each network domain 

2. Connect to a peer known to X that it knows – a 
friend / colleague. 

For a novice/new node, the first option may be the 
most appropriate. As X ages, it finds other nodes and adds 
these links to improve search speed and information 
access. The linkages are bi-directional and similar to 
friendships in real life, or to http links in the Web. They 
are directed by humans. 
 
2.4. Link Weights 
 

Peer links are used to compute Link Weights at each 
peer in the network. As mentioned earlier, this value is 
very important to help determine the membership of a 
peer in a community and rank peers in a community for 
the purposes of information dissemination and trust. 

Below, we provide a definition for Link Weights followed 
by an illustrative example in Fig. 2. In subsequent sections 
we explain how this value is used in our algorithms. 
 
LINK WEIGHTS: This is the weight calculated for each 
claimed attribute of a peer V based on the number of links 
from V that can reach, after at most one indirection, other 
peers that claim the same attribute. 

 
The constraint of at most one indirection is necessary 

to restrict the maximum depth up to which peers will be 
examined since more than two levels deep resulted in an 
unacceptably high number of communication messages. 
See Fig. 3 for the average number of peers that are 
reachable from a peer. 

 

3. P2P Community Trust Model 
 

We propose an optimistic trust model that provides 
probabilistic guarantees based on the status / popularity of 
the peers. Peers have the ability to revoke their 
relationships with malicious peers and thus cause the trust 
values of wrong-doers to be reduced. The probabilistic 
guarantee provides a web-of-trust style estimate based on 
a peer’s past transactions. The accuracy of the guarantee 
depends on the thoroughness of the peer in discovering 
and validating the trust values of other peers. Therefore, 
non-critical transactions need not consume the resources 
of the P2P system. 

In this section we describe our model for trust using 
P2P Communities. We explain how trust can be assigned 
and discovered. The following sections discuss how trust 
can be revoked, and protected against non-repudiation. 



3.1. Peer Roles and Involvement 
 
We previously pointed out that P2P communities are 

implicitly formed, self-organizing structures that depend 
on the declared (claimed) interests of peers. As a result, 
peers may belong to more than one, possibly overlapping 
community. In the case of a constrained application, such 
as a digital library, community structures will span across 
departmental or organizational boundaries. For instance, if 
the digital library were implemented by government 
departments to share documents and resources, a 
conceivable community might include peers from both, 
the Department of Commerce (Maritime Administration) 
and the Department of Environmental Resources that are 
concurrently interested in pollution in US ocean water-
ways. This is an example of a cross-departmental 
community. Peers might also be part of intra-departmental 
communities, such as the community of Maritime 
Administration, or the community of Transportation 
within the Department of Commerce. 

The different communities within which a peer can 
participate due to its claimed interest attributes constitute 
the roles of the peer. Every peer will have at least one role 
corresponding to its pre-determined group. Link Weights, 
by definition, indicate the number of peers known directly 
(1-hop neighbors), or indirectly (2-hop neighbors) to a 
peer within each of its roles (communities). Below we 
provide a definition for involvement, which, like Link 
Weights, is associated with each role Ψ of a peer V and is 
proportional to the number of peers within the 
neighborhood (1-hop and 2-hop neighbors) of V that are 
also part of Ψ. We call peers with high values of 
involvement, seers (See [10] for definition). 
 
INVOLVEMENT: The average of link weights for 
elements of the intersection set Ci ∩ S is directly 
proportional to the involvement of node i which has the 
claimed attribute set Ci in a peer-to-peer community with 
signature S. 

 
If peer V from Fig. 2 is a member of community of 

Science Fiction enthusiasts that has a community signature 
of {“Technical”, “Fiction”}, then the involvement value of 
V in this community will be directly proportional 12, 
which is the average of the individual Link Weights for 
the claimed attributes, “Technical” and “Fiction”. 

For the purposes of simplicity, the examples discussed 
in this paper consider P2P communities each formed due 
to single shared interest attributes. This means that the 
signature S of every community will be a single attribute 
set. Therefore, the intersection set Ci ∩ S can only contain 
one claimed attribute which has an associated Link 
Weight that is also the Involvement value of the peer in 
the community S. Nevertheless, our definition for 
Involvement provides a way to extract values in more 

complex scenarios where communities of peers share 
more than just a single interest attribute in common. 

 
3.2. Trust, Links and Link Weights 

 
3.2.1. First Attempt: Trust and Links. We initially 
associated trust values with peer links due to the following 
reasons: (1) Peers create and maintain links to other peers 
whom they know and therefore trust (optimistically); (2) 
Since links are bi-directional, information provided by 
peers that have more links might be more trustworthy. The 
association of trustworthiness of information 
(authoritativeness) with links is used by Google in its 
PageRank metric [13]. The PageRank of a web page 
measures the authoritativeness of its content; (3) Peer 
links offer a simple, natural trust model that can easily be 
revoked. If after some transaction, a peer loses trust in its 
neighbor, it can break (remove) that link, thereby reducing 
the number of links at its neighbor. 

There are strong arguments that can be made against 
the use of popularity as a measure of trust, quality or 
reliability. However, there are specific applications in 
which this mapping would not be unusual. Examples of 
analogous systems with a similar association between trust 
and links include: citation graphs in scientific 
publications, where experts who are well-known and 
highly regarded by most other authors tend to be highly 
connected nodes [11, 14, 15]; and eBay points, where the 
rank of users is proportional to the number of transactions 
(purchase / sale) that they have completed with other eBay 
users. 

Despite its wide-spread use, the association of trust 
with peer links does not provide an elegant solution to 
trust management. Often, peers that are highly linked-to 
(hubs) make mistakes, provide incorrect information, or 
assist in spreading damaging information unintentionally. 
[16] argues that viruses or damaging information from 
hubs can epidemically spread and persist within a scale-
free network, such as P2P network.  

We believe that by making a slight modification, links 
can provide practical and accurate trust guarantees in 
decentralized systems. The most important detail that has 
been lacking in previous trust models is the consideration 
that peers participate in many different communities 
(roles). Therefore, in the citation graph, although an 
author of papers in Biology is highly cited, it is 
conceivable that the author’s explanations of Electrical 
Engineering concepts are incorrect. Likewise, on eBay, a 
popular antique seller is not necessarily a trusted expert on 
electronic equipment. 
 
3.2.2. Second Attempt: Trust and Links Weights. It is 
necessary to consider the roles of a peer when deriving its 
trust value. We thus propose the use of Link Weights as 
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Figure 4. Trust Value Distribution when 
trust is associated with Link Weights. (1000 
peers)  
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Figure 5. Trust Value Distribution when 
trust is associated with links. (1000 peers) 

an indication of role-based trust. With reference to Fig. 2, 
peer V knows more peers within the community of peers 
interested in “Biography”, than it knows within its other 
communities. As a result, information provided by V and 
classified as “Biography” is more likely to be accurate 
than information provided by V and classified as 
“Magazine”. 

Let us imagine another peer named W that has a Link 
Weight of 10 associated with the interest “Biography.” 
Using our model, V would have a trust value of 10 for W, 
but W would have a higher trust value of 23 for V. The 
association of Link Weights with trust values allows for 

asymmetric trust relationships that imitates trust 
relationships amongst humans in a social network. 

 
3.3. Trust Value Distribution 
 

We plot the distribution of trust values in a simulated 
P2P network containing 1000 nodes. The graph in Fig. 
4(b) shows a non-scale-free distribution of trust values, 
i.e. a large number of peers had trust values around 100. 
On the contrary, Fig. 5 shows a power law decay, 
indicating that almost all peers have low trust values 
except for a small group of peers that have exceptionally 
high trust values This is important because it highlights 
the dissimilarity in the distribution of trust values when it 
was obtained from links (Fig. 5) and our model (Fig. 4), 
where trust values are obtained from Link Weights. 

In order to correctly model the P2P network, we 
ensured that the peer link topology was scale-free (See 
Appendix for technique used to form P2P networks). 

Fig. 4(a) illustrates that the majority of peers start out 
with a median trust value (around the center of a range of 
values), while a small group of peers have either higher or 
lower trust values. In the network considered, the average 
trust value was 100, maximum was 628, minimum was 7, 
and mode and median were 93. This distribution of trust 
values is most suitable for an optimistic trust model such 
as ours because a peer can enter into transactions with 
other peers whose trust values are median and most likely 
comparable to its own. Malicious peers will find their trust 
values dropping unlike in a scale-free distribution where 
trust values usually cannot be lowered because most peers 
start out with low trust values. For critical transactions, 
information can be sought from peers with higher trust 
values. 
 
3.3. Verification and Validation of Trust Values 

 
In [8] we proposed an Attribute Escalation algorithm 

that uncovered implicit communities and enabled the 
formation of new communities. The algorithm is an 
autonomous procedure that is asynchronously executed by 
each peer. To execute the algorithm, peer V sends all 
peers within its neighborhood (through message 
forwarding by its neighbors) a list of its claimed attributes. 
In turn, V receives the lists of claimed attributes from its 
neighborhood peers. Through this simple exchange, we 
demonstrated how communities were formed. The 
calculation of Link Weights corresponding to each 
claimed attribute follows the algorithm. 

We propose a simple modification to the Attribute 
Escalation algorithm that will allow trust values of a peer 
to be guaranteed. Instead of simply sending out the list of 
claimed attributes, each peer V will construct the 
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following message M and send it individually to each of 
its neighborhood peers {V1, V2, … , Vn}. 

 

{ } ( )MsourceEsourceCAsourceIPdestIPM ,,,=  

where, 

M is the constructed message, 

destIP is the destination identity (a neighborhood peer), 

sourceIP  is the sender identity (i.e. V), 

sourceCA is the claimed attributes list of the sender,  

( )MEsource is the M’s signature by the sender’s private 
key. 

Every peer is responsible for storing messages received 
from its neighborhood peers in a publicly accessible 
blackboard [10]. Blackboards are like websites and the 
content on a peer’s blackboard can be viewed by any peer 
within the system. 

Let us return to the example in Fig. 2. When V claims a 
Link Weight (and therefore trust value) of 23 for 
“Biography,” any peer W in the P2P system will be able to 

verify this value by visiting V’s blackboard and re-
calculating the Link Weight from the posted messages. 
This calculation is a simple counting operation with a 
complexity of O(n) (See [8] for detailed algorithm). Prior 
to verifying the Link Weight however, W might chose to 
validate the signatures of the messages posted on V’s 
blackboard in an attempt to uncover fabricated messages 
that were used to artificially increase V’s Link Weight 
value. We call these fabricated messages false messages. 

It might seem intuitive that before entering into a 
critical transaction with peer V, an exhaustive process 
needs to be employed where every one of V’s messages 
has its signature validated. However, we show that 
contrary to intuition, peers need only validate a small 
percentage of messages to uncover one or more false 
messages (if they exist) with a high degree of probability. 

We begin by providing a brief theoretical analysis and 
back it with results obtained from experiments. 

Let N be the number of messages on peer V’s 
blackboard. Assume k messages are false. Therefore, N-k 
messages are not false. Also assume that peer W randomly 
selects m messages to validate. Now the probability that W 
will not discover any false messages is given by: 
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So the probability that W will discover a false message 

is: 
ρρ −=′ 1  

Fig. 6 plots the relation between percentage messages 
verified and ρ'. The curves vary for k =10% of N, k =20% 
of N, and k =30% of N. N was chosen to be 100. An 
increasing percentage of m/N forms the X-axis, while ρ' 
forms the Y-axis. The graph shows that selecting just 10-
20% of the messages to validate will uncover false 
messages with probability of 70-95%. If a peer fabricates 
more messages, then the validation of messages will 
quickly uncover false messages. 

The theoretical analysis indicates that peers will 
uncover false messages even when a small, randomly 
selected set of messages is validated. We also observed 
this behavior in our experiments. Fig. 7 presents two 
cases: N = 100 messages, and N = 700 messages, when the 
percentage of messages randomly selected for validation 
(%m/N) was set at only 10%. The graph shows that even 
when only 10% of the messages are false, 10% of those 
false messages were uncovered by a peer that randomly 
selected 10% of the original number of messages to 
validate. 

 
4. Using the Trust Model in Dynamic Coalitions 

 
Dynamic Coalitions are temporarily formed between 

peers belonging to different communities that each 
represents a separate organization / department. The trust 
model we proposed can be used to provide probabilistic 
trust guarantees to each peer in the coalition. 



bool CommonCommunities(int); 
int[] ListTrusts(int); 
bool AskNeighbors(int); 
int[] Lower(int[]); 
bool Ask2HopNeighbors(int); 
bool VerifiedTrusts(int[]); 
 
int[] FindTrust(int PeerID) 
begin 
 
   int[] list_Trusts; // trust values 
 
   if (CommonCommunities(PeerID)) 
   begin-if 
      list_Trusts=ListTrusts(PeerID); 
   else-if (AskNeighbors(PeerID)) 
      list_Trusts=ListTrusts(PeerID); 
      list_Trusts=Lower(list_Trusts); 
   else-if (Ask2HopNeighbors(PeerID)) 
      list_Trusts=listTrusts(PeerID); 
      list_Trusts=Lower(list_Trusts); 
      list_Trusts=Lower(list_Trusts); 
   else-if 
      WARNING “No trust values!”; 
      return NULL; 
   end-if 
 
   if (VerifiedTrusts(list_Trusts)) 
   begin-if 
      return list_Trusts; 
   else 
      WARNING “Found False Messages”; 
      return list_Trusts; 
   end-if 
end-proc 

 
Figure 8. Pseudo-code for finding trust values of 
a peer in a coalition 

 
Fig. 8 lists the algorithm that we use to obtain trust 

values of a peer in a Dynamic Coalition. Since peers can 
belong to more than one community, the FindTrust 
method finds all the trust values (Link Weights) of a peer 
V. The method can be invoked by any peer W (not 
necessarily part of the Coalition). Initially, the 
CommonCommunities method checks V’s claimed 
attributes (posted as messages on its blackboard) for any 
common attributes between W and V, indicating possibly 
shared communities. This is a linear search operation with 
complexity of O(n). If there are no common attributes, W 
asks all its immediate neighbors if any of them share 
communities with V. In the worst case scenario (neighbors 
need to execute CommonCommunities), the operation has 
O(n2) complexity. The best case scenario (neighbors 
already know common communities from past 
transactions) is an O(n) operation. As a final attempt, if 
still no common attributes exist, W asks its 2-hop 
neighbors the same question (worst case: O(n2), best case: 
O(n)) before giving up trying to find trust values for V. 

Remember that after the attribute escalation algorithm, a 
peer knows the identities of all its 2-hop neighbors and 
therefore does not have to find their identities at this stage. 
In order to reduce bandwidth utilization and processing 
time, a peer might decide to forego finding trust values 
from its 2-hop neighbors. Our experiments revealed that 
2-hop neighbors need to be consulted 32% of the time 
when 10% of randomly selected peers invoked FindTrust. 

For each attribute found in common with V, the 
corresponding Link Weight is stored in list_Trusts. Link 
Weights provided by 1-hop neighbors will be multiplied 
by 0.5 and values provided by 2-hop neighbors get 
multiplied by 0.25. All trust values are validated using the 
process described in the earlier section. 

The list of trust values provides a peer in a coalition 
with a probabilistic trust guarantee about another peer. 
Tampered values do not go undetected (due to verification 
and validation), making these values secure. Additionally, 
trust values can be transitively obtained from other peers 
and scaled down depending on the peer providing the 
values. 

As an alternative to our current scaling down process, 
trust values transitively obtained from another peer could 
be multiplied by the trust value of that peer. However, we 
have not yet explained how a peer can have a single trust 
value. In the next section, we will present our idea for a 
collective trust value of a peer that can be used for a more 
realistic scaling process amongst other benefits. 

 
4.1 Aggregating Trust Values into an iComplex 

 
The list of trust values associated with each peer can be 

used to provide probabilistic guarantees to other peers. 
However in a practical implementation of P2P 
communities, a single shared interest attribute will not 
always be the signature of a community. At the end of 
section 3.1 we assumed that every community signature 
contained only a single attribute. Let us see what happens 
when this simplification assumption were temporarily 
removed. 

Firstly this means that |S| could be greater than one. 
Imagine a digital library with several communities of 
peers. Suppose there exists a community (of science-
fiction enthusiasts)2 with signature S1 = {“Fiction”, 
“Technical”}, and another community (of fiction 
enthusiasts) with signature S2 = {“Fiction”}. Finally 
assume that Peer V (from Fig. 2) is a member of both 
these overlapping communities. Based on the Link Weight 
values from Fig. 2 and the definition of Involvement 
(Section 3.1), V is more involved in the community of 
fiction enthusiasts than in the former community. If there 

                                                 
2 Assigning community names can be done through various consensus 
and election protocols that are outside the scope of this paper. 
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Figure 8. The above graphs show the 
behavior of iComplex when calculated as a 
sum of all trust values. 

exists another peer W with Link Weight values, 
“Fiction”=18 and “Technical”=18 (therefore W’s 
Involvement in community S1 is 18), then information 
provided by W and classified as “science-fiction” is more 
likely to be accurate than information provided by V 
having the same classification. 

Involvement values, which are associated with each 

community within which a peer is a member, play an 
important role in determining accurate role-based trust 
values of a peer. We now propose aggregating all 

involvement values corresponding to a peer into an 
iComplex. An iComplex value is calculated by each peer 
individually and stored on their own blackboards. Since 
iComplex values are, in essence, aggregations of trust 
values, the verification and validation process described 
earlier will still apply. As a system design, all peers need 
to agree upon the aggregation function to calculate their 
iComplex values. Examples include but are not restricted 
to: sum of all trust values, or average of all relative trust 
values. A relative trust value rt1 = t1 divided by the 
approximate size of community S1={C1}, where t1 is a 
trust value for attribute C1, and the approximate size of the 
community is obtained through Distributed Discovery [9, 
10]. 

In Fig. 8 we show the behavior when sum is the 
aggregate function used to compute iComplex values. The 
first graph illustrates that higher iComplex values implies 
that the peers are seers (highly-involved) in more 
communities and therefore these seers have higher trust 
values than other peers in each of their roles. The next 
graph shows the relationship between iComplex and 
number of memberships held by a peer. This graph is 
significant because it demonstrates the effectiveness of an 
iComplex value aggregated using a simple sum function. 
The graph shows that peers cannot increase their 
iComplex values by simply joining many communities. In 
fact peers that are members of many communities are 
most likely to have low iComplex values (notice the 
clustering of points close to the Y-axis). The final graph 
shows that peers cannot obtain high iComplex values by 
joining very large communities. The peers with the 
highest iComplex values were members of average sized 
communities. 

Therefore, iComplex values calculated by adding all 
trust values of a peer can provide a reliable, collective 
trust value. Moreover, peers will not be able to 
synthetically increase their iComplex value by simply 
joining more communities or joining larger communities. 
A higher iComplex usually indicates that the peer is a seer 
of many communities and therefore trusted by the peers of 
those communities. 
 
4.2. Using iComplex for Information Assurance 
 

The community-based organization of peers enables a 
more efficient searching mechanism [10] that works by 
targeting one or more communities, irrespective of the 
current membership of the searching peer. Any peer that 
needs to search the P2P network constructs a three-part 
search query containing: (1) the identity of the peer 
creating the query, (2) the actual query for an item, and 
(3) a list of meta-information that describe the item. 

In an interest-based P2P network, such as our digital 
library, a peer might use interest attributes as meta-
information to a query. For instance, if the query is for 



“books about Vampires,” the list of meta-information 
might include attributes such as, “Twentieth century,” 
“Bram Stoker,” and “European authors.” Responses to a 
query are received asynchronously by the searching peer. 
A peer will respond to a query if it either owns the 
requested books or can provide information about the peer 
that owns the requested books. 

The response to a query contains: (1) the identity of the 
responding peer, (2) the query for which the response is 
being sent, and (3) a list of Link Weight values 
corresponding to as many meta-information attributes that 
match the claimed attributes of the responding peer. 

An incremental change to the format of the responses 
can be made by requiring the responding peer to send its 
iComplex value as well. This provides the querying peer 
with information on the probabilistic trust values of the 
responding peers. The iComplex values received will 
allow a querying peer to rank responses based on the 
probabilistic trust values of the responding peers. 

 
4.3. Attacks and Threat Assessment 

 
Without the iComplex value, malicious peers could 

misinform a querying peer about the peer that owns a 
particular book / resource. A misinformed querying peer 
will then obtain incorrect / damaging data from the peer 
identified by malicious peers. In a business-world 
implementation of digital libraries, malicious peers might 
dishonestly divert traffic away from certain other peers. 

Since iComplex values are ultimately calculated from 
Link Weights which are dependent on the number of peers 
in one’s neighborhood that share a certain attribute, one 
way of fraudulently increasing the iComplex value would 
be to create dummy neighbors with real peer identities and 
interests. This is a difficult problem to solve. There have 
been a few attempts to solve this by: using reputation-
based systems or making it difficult to create a new peer 
identity [17] (by computationally expensive key 
generation, or associating it with a government issued 
identity number, such as social security number, voter 
identification number, and so on). 

Finally, because our trust model provides probabilistic 
guarantees, a peer with a high iComplex value can still 
provide (with low probability of doing so) incorrect / 
damaging information as a result of a query. We therefore 
propose a revocation mechanism (described in the next 
section) as a means to punish wrong-doers. 

 

5. Revocation and Non-Repudiation of Trust 
 
In this section we discuss how our trust model allows 

peers to revoke relationships with malicious peers, and the 
non-repudiation of peer relations. Malicious peers are not 
only peers that provide incorrect/damaging information, 

but also are peers that use unfair methods to lower the 
trust values of their neighbors. 
 
5.1. Revocation 

 
We propose a distributed revocation mechanism, where 

each peer maintains its own revocation list. Therefore a 
disgruntled peer W that has been affected by previous 
transactions with a malicious peer V can simply maintain 
this information in a revocation list posted on its 
blackboard. 

The validation procedure described earlier involves 
validating the signatures of the messages posted on a peer 
V’s blackboard in an attempt to uncover false messages. In 
order to allow for revocation of these messages, we 
propose an additional action that peers entering into a 
transaction with V can execute after the validation 
procedure. We call this action Revocation Check. The 
action entails: (1) randomly selecting a few validated 
messages from V’s blackboard; (2) determining the peers 
that authored those messages; and (3) visiting the 
blackboards of the message authors to check for possible 
revocations. If the Revocation Check finds that the 
message authors have placed V in their revocation lists, 
then those messages are called revoked messages. 

Section 3.3 explains the relationship between the 
number of messages validated and the number of false 
messages uncovered. We therefore know that if 10% of 
the messages of a peer V were selected for Revocation 
Check and 10% of V’s neighbors had placed V in their 
revocation lists, then the Revocation Check will find that 
10% of the selected messages are revoked messages. 

As a result, if V has maintained a good record over a 
large number of transactions, except for a few 
incorrect/damaging transactions, then its trust value will 
remain high. Also, a malicious neighbor of V would not be 
able to independently bring down the V’s trust value.  

Finally, the Revocation Check procedure can ascertain 
if a malicious neighbor W of V has unfairly revoked its 
relationship with V. This means that W continues to 
account V’s signed messages to calculate its trust values 
and iComplex value even after placing V in its revocation 
list.  

 
5.2. Non-Repudiation 
 

We have shown how peers can revoke their 
relationships with malicious peers to punish them for false 
or damaging information. However, since trust values are 
derived from peer links, it is essential to ensure that peers 
cannot falsely deny their relationship with another peer. 

A malicious neighbor W of V cannot lie about the fact 
that it is a neighbor of V. This is because the signed 
message (section 3.3) addressed to V and created by W 



will be publicly accessible from V’s blackboard. 
Therefore trust values calculated as a result of peer links 
have non-repudiation. 

 

6. Related Work 
 

A considerable amount of research has focused on the 
analysis of link structures in collections of objects. 
Through these analyses, researchers had hoped to discover 
a process that could be implemented to effectively identify 
and discover specific patterns in the collection. Early 
attempts to analyze the collective properties of interacting 
agents have been found in social networks [18], where 
link structures like cliques, centroids and diameters were 
studied. The field of citation analysis [19] and 
bibliometrics [20] seek to identify patterns in collections 
of literature documents by using citation links. 

Patterns in several complex systems have been found 
to be self-organizing [21], often because of the 
autonomous creation of links by participating nodes (with 
some influence of a partial system view). Previously, such 
types of systems had been described by Erdös and Rényi 
[22] who modeled complex systems as random networks 
and studied their properties. Watts and Strogatz [23] later 
studied the properties of large regularly connected graphs 
of nodes that contain a few random long-distance edges 
between nodes. They modeled this structure and 
demonstrated that the path-length between any two nodes 
of the graph is in fact surprisingly small. As a result, they 
called these semi-random structures small-world 
networks. More recently, Strogatz [24] and Amaral et al. 
[25] observed that many networks demonstrated 
topological properties that were different from the 
predictions made by random network theory. Specifically 
in these networks, called "scale-free networks", the degree 
distribution of participating nodes was found to decay as a 
power law. 

Perhaps one of the earliest formalizations of trust in 
computing systems was done by Marsh [26]. He attempted 
to integrate the various facets of trust from the disciplines 
of economics, psychology, philosophy and sociology. 
Rahman and Hailes [27] proposed a trust model based on 
the work done by Marsh but specifically for online virtual 
communities where every agent maintained a large data 
structure representing a version of global knowledge 
about the entire network. Gil and Ratnakar [28] describe a 
feedback mechanism that assigns credibility and reliability 
values to sources based on averages of feedback received 
from individual users. 

More along the lines of trust and social networks, 
Golbeck, Hendler and Parsia [29] presented an approach 
to integrate social network analysis and the semantic web. 
Yu and Singh [30] introduced a referral graph comprising 
agents as weighted nodes and referrals as weighted edges 

between participating agents. The graph topology can be 
changed over time, for instance after bad experiences 
agents can change their list of neighbors and also 
propagate information about the "bad" agent within the 
network. Yolum and Singh [31] propose a similar 
approach that enables the study of the emergence of 
authorities in self-organizing referral networks. Pujol et al. 
[32] associate reputation of an agent with its degree in a 
social network graph. Similar to PageRank in Google, an 
agent gets a high reputation if it is pointed to by other 
agents that also have high reputation. Aberer and 
Despotovic [33] analyze earlier transactions of agents and 
derive from that the reputation of an agent. Reputation 
provides a value that indicates the probability that the 
agent will cheat. They also presented a design for trust 
management using their proprietary decentralized storage 
method. 

Our work introduces a novel role-based trust model 
and discusses its use within dynamic coalitions of peers. 
We associate trust values with Link Weights instead of 
links and finally propose an aggregation of different trust 
values of a peer into a single probabilistic trust value. Our 
algorithms are completely decentralized and the trust 
values are secure and can be thoroughly validated and 
verified without a high communication overhead. 

 

7. Conclusion 
 

Without a viable trust model, information sharing in 
P2P systems will be susceptible to the spreading of 
viruses, and incorrect or damaging information. In this 
paper, we consider a P2P system containing self-
organizing, overlapping, interest-based communities that 
can be uncovered using decentralized techniques. We 
relate peer communities to Dynamic Coalitions where 
coalitions are created between peers in different 
communities. The communities within which a peer can 
participate due to its claimed interests constitute the roles 
of the peer. Every peer will have at least one role 
corresponding to its pre-determined group. Each claimed 
interest of a peer is associated with a Link Weight that 
indicates the number of neighboring peers (1-hop or 2-
hop) sharing the same interest. The computation of Link 
Weights has been described in an earlier work and 
involves simple message exchanges amongst peers in a 
process known as Attribute Escalation. In this paper, we 
discussed how these messages can be protected against 
tampering and counterfeiting. 

Our proposed trust model is optimistic in that the 
majority of peers start with a median trust value, while a 
small group of peers have either higher or lower trust 
values. We proposed the use of Link Weights as an 
indication of role-based trust and provided the definition 
of Involvement to extract values in complex scenarios 



where communities of peers shared more than just a single 
interest in common. Trust values are a probabilistic 
guarantee similar to web-of-trust style estimates and is 
based on a peer’s past transactions. We proposed a simple 
modification to the Attribute Escalation algorithm that 
allowed trust values of a peer to be verified and validated 
by any other peer in the network. The theoretical analysis 
of the validation process indicated that selecting just 10-
20% of messages to validate uncovered false messages 
with probability of 70-95%. If a peer fabricated more 
messages, then the validation of messages quickly 
uncovered false messages. Similar results were also 
obtained experimentally. 

The trust model we proposed can also provide 
probabilistic trust guarantees to each peer in the coalition. 
We provided an algorithm to obtain trust values of a peer 
in a Dynamic Coalition transitively. Involvement values, 
which are associated with each community within which a 
peer is a member, play an important role in determining 
accurate role-based trust values of a peer. We proposed 
aggregating all involvement values corresponding to a 
peer into an iComplex. An iComplex value is calculated 
by each peer individually and can be guaranteed by using 
the verification and validation process. We demonstrated 
experimentally that iComplex values calculated by adding 
all trust values of a peer can provide a reliable, collective 
trust value. We discussed the use of iComplex values in 
information assurance and also delved into the subject of 
attacks and known threats of our trust model. 

Finally we explained how our trust model allows peers 
to revoke relationships with malicious peers, and the non-
repudiation of peer relations. Malicious peers are not only 
peers that provide incorrect/damaging information, but 
also are peers that use unfair methods to lower the trust 
values of their neighbors. 
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Appendix 
 

In this section, we describe the properties of the 
resulting P2P network, such as small-world networks, and 
scale free networks. Finally, we propose a new technique 
for generating a P2P network for our simulations. 
 
Small-World Networks 
 

Watts and Strogatz [23] have described a special type 
of semi-random network, called “Small-World Networks,” 
which contain a few randomly re-wired long-distance 
edges within a regularly connected network of nodes. 
These networks have low characteristic path lengths (as in 
random networks) and high clustering coefficients (as in 
regular networks). Subsequently, a number of papers have 
acknowledged the existence of small-world networks in 
the Internet topology [34, 35]; the power grid of the 
western United States; various social networks [23], such 
as the collaboration graph of film actors; Erdös numbered 
research scientists; and even in the neural network of the 
worm C. elegans. 

Further, Granovetter [36] discusses the existence and 
shows the importance of weak social ties (links) between 
highly connected clusters of friends. 

The similarity of P2P networks to social networks and 
the fact that humans direct peer links led us to believe that 
P2P networks would also exhibit small-world behavior. In 
fact, this has already been observed in existing P2P 
networks, such as Gnutella [2]. 

 
Scale-Free Networks 
 

Scale-free networks are characterized by the uneven 
distribution of connections (links) in the nodes of the 
network. Unlike a random network that exhibits a Poisson 
distribution of node degrees, a scale-free network 
demonstrates a degree distribution that decays as a power 
law. Hence, scale-free networks have sometimes been 
described as power-law networks. 

During the study on complex networks, [24, 25] 
observed that many networks demonstrated topological 
properties that were different from the predictions made 
by random network theory. In particular, the existence of 
some very well connected “hub” nodes dramatically 
influenced the behavior of these scale-free networks 
during random node failures and spreading of information. 
It has been shown that various networks, such as the 
collaboration graphs of actors and scientists, were 
developed due the feature of preferential attachment [37, 
38, 39]. This feature describes the probability of a node 
acquiring new links as an increasing function of the links 
that it currently has. 

In order to correctly model the P2P network, it is 
important that we also incorporate the scale-free property 
into the network topology. 
 
Creating Our Own P2P Network 
 

We needed to provide a mechanism to ensure that our 
P2P network topology would exhibit the properties of a 
small-world network and would also show a power-law 
distribution for frequency vs. degree. 

Our next approach [9] involved enforcing certain rules 
on new peers that wanted to join the P2P system. We were 
inspired by the work of M. Steyvers and J. Tenenbaum 
[40] on semantic networks, and extended the domain of 
their model to a P2P network that involved peers and 
links. 

The new peer, X, has to follow a two-step procedure 
(described below) in order to join a P2P system. 
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