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Abstract. Interest-based communities are a natural arrangement of dis-
tributed systems that prune the search space and allow for better dissem-
ination of information to participating peers. In this paper, we introduce
the notion of peer communities. Communities are like interest groups,
modeled after human communities and can overlap. Our work focuses on
providing efficient formation, discovery and management techniques that
can be implemented to constantly changing community structures. We
provide a mechanism to generate realistic peer-to-peer network topolo-
gies that can be used in simulations that evaluate the operation of our
algorithms. Our experiments show how searching the peer-to-peer net-
work can take advantage of peer communities to reduce the number of
messages and improve the quality of search results.

1 Introduction

The current organization of the Internet allows users to connect to web servers
of their interest that are often located using a search engine, such as [1–3]. In
this paper, we propose an alternative organization built on an overlay network
of peers. We provide a model for communication that scales well and efficiently
uncovers community structures. We describe how these communities of peers
can be used in structuring the peer-to-peer network.

A Peer-to-peer (P2P) system is a distributed system in which peers that
have comparable roles and responsibilities, communicate information, share or
consume services and resources between them [4]. These systems can harness
massive amounts of storage with modest investment and no central authority [5,
6], and are therefore particularly attractive to everyday home computer users,
who seem empowered by the ability to share a portion of the authority. The
emergence of file-sharing applications, such as Gnutella [5], Freenet [6] and Nap-
ster [7], has been the catalyst that drew a lot of attention to P2P systems.

We introduce the notion of peer communities as a generalization of the mul-
tiplicity of peer groups (possibly overlapping) involving peers that are actively
engaged in the sharing, communication and promotion of common interests. Our
concept of peer communities is loosely based on the idea of “interest groups,” for
example Yahoo Groups [8] or Usenet Newsgroups, except that communities are
self-organizing, and are formed implicitly due to the declared interests of human
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users. We use communities as a more natural arrangement of distributed sys-
tems and show how they are helpful in pruning the search space. They also allow
for better dissemination of information to participating peers, thereby reducing
unnecessary communication within the P2P network.

Our solution for searching in P2P takes advantage of the self-organization
of peers, and their capacity to form communities based on the interests of their
human users and the interactions of individual peers. Earlier P2P search tech-
niques, such as flooding, directed flooding, iterative deepening [9], and local
indices [9], had the disadvantage that information located farther away from a
peer could only be found through a considerable search expense. We believe that
the community-based search query propagation provides more efficient searching
by targeting one or more communities, irrespective of the current membership
of the searching peer. Our technique follows the innate method of searching used
by humans in the analogous social network, where queries for unknown items are
asked to “those that know.” The community-based search technique will allow
search operations to be based on content rather than just filenames, as in many
existing P2P search techniques [5, 6, 10, 11].

Efficient discovery and management of constantly changing community struc-
tures are essential to performing the proposed community-based search query
propagation in a populated P2P space. In this paper, we show how these self-
configuring communities are formed, discovered and managed, in spite of node
failures. Finally, we discuss the mechanics of our community-based search so-
lution and provide some initial evaluations of its performance. To demonstrate
the performance of our algorithms, we use simulations to create populated P2P
networks.

The paper is arranged as follows. Section 2 provides the motivation; Section 3
introduces some of the terms that we use; Section 4 describes how P2P networks
are created; Section 5 illustrates our algorithms for structuring the network; and
Section 6 explains the community-based search and provides simulation results.
We conclude with Section 7.

2 Motivation

We view P2P networks consisting of an end-to-end overlay network of peers
as being analogous to social networks comprising of humans. In fact, many of
our proposed solutions for forming, discovering and managing structures in P2P
networks, and their use to provide a more efficient search technique were moti-
vated by our observations of similar solutions in social networks. For instance,
the inclination of autonomous elements in a social system to form groups and
associations leads us to believe that a populated P2P system made up of peers
and an end-to-end overlay network, will also form similar community structures.
Thus, P2P communities are a natural extension for arranging distributed P2P
systems. Like their social network counterpart, these structures also enhance the
capabilities of each member.



Structuring Peer-to-Peer Networks 3

In this research we focused on understanding these community structures
and proposing algorithms that can help manage and utilize P2P communities
for better search operations, and consequently create newer P2P applications.

2.1 Forming and Discovering P2P Communities

A P2P community is a non-empty set of peers that share a non-empty set of in-
terests that they have in common. Unlike a group, which is a physical collection
of objects, a community is a set of active members, involved in sharing, commu-
nicating, and promoting a common interest. Peers in a network can exchange or
advertise their interests with their neighbors in order to find peers with whom
community relationships can be formed.

We proposed a community formation algorithm [12] that works without any
central authority and optimizes the cost of communication. The algorithm is an
autonomous procedure that is executed asynchronously by each peer. Through a
simple exchange of interests, we demonstrated how communities could be formed.
Each peer can then analyze the received interests to discover its community
memberships without any additional communication.

2.2 Information Dissemination

P2P communities aid in the better dissemination of useful information amongst
peers. For example, suppose node X belongs to a person interested in Amazo-
nian Biological Catapults (ABC). After X declares this interest, it implicitly
becomes a member of the community of ABC enthusiasts. Henceforth, all the
information that X wants to share can be placed in a public directory that can
be read/searched by all members of ABC. This concept can be extended to
discover resources, physical devices, and network components. This example is
interesting in the context of peer communities with no overlapping interests and
is especially applicable in applications that follow the publish-subscribe-notify
model [13].

2.3 Pruning the Search Space

Searching for information is one of the key challenges in P2P systems. Central-
ized searching has a drawback: the indexing and presentation of information
are controlled by a central authority. P2P searching allows anyone to put up
information in the search index and then cooperatively search the P2P space.

Consider a digital library built from a collection of peers, in which each peer
owns a set of books that it is willing to share with other peers. The subjects of
the books that a peer owns form its set of interests. Peers are implicitly grouped
into communities based on the common interests they share. Since a peer could
own books spanning a variety of subjects, it could be a member of multiple
communities.
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Fig. 1. Example of peer communities linked by a common peer. The vertices represent
peers, and edges represent end-to-end connections between peers. The closely connected
collection of peers to the left and the similar but smaller collection to the right are
assumed to be two separate communities that are linked by a common peer

If the Computer Science (CS) and Medical (M) communities were disjoint,
then search operations for medical information performed by a node that be-
longed to the CS community would not yeild any results. However, if the com-
munities were linked at some point, lets say Q (Q belongs to both communities),
then the medical information would be found, but at a great search expense,
since, on the average, half of the CS community would be searched before a
node from the M community is found.

To mitigate such problems, we need a community based query propagation
method. Thus to provide efficient searching, it is better to search for one or
more target communities, irrespective of the current membership of the searching
node.

3 Terms and Definitions

In this section, we define and explain in detail two of the most commonly used
terms in this paper: (i) Interest Attributes, and (ii) Peer Links.

3.1 Interest Attributes

Peer communities are formed based on their common interests. In our model,
common interests are represented by attributes, which are used to determine the
peer communities in which a particular peer can participate. Attributes can be
either explicitly provided by a peer or implicitly discovered from past queries.
However, there are privacy and security concerns in using such information, so
we divide interests into three classes - personal, claimed, and group.

The full set of attributes for a peer is called personal attributes. However,
for privacy and/or security reasons, all these attributes may not be used to
determine community membership. A user may not want to reveal some of her
personal attributes. Hence, a subset of these attributes is explicitly claimed pub-
lic by a peer. We call these the claimed attributes. In addition, we introduce the
notion of group attributes. Group attributes are location or affiliation-oriented
and are needed to form a physical basis for communities. Every node belongs to
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at least one pre-determined group and has a group attribute that identifies the
node as a member of this group. The domain name of an Internet connection
may be used as the group identifier.

The group attribute is also considered to be a personal attribute, which may
or may not be one of the claimed attributes. It is recommended that a node
include the group attribute as part of the claimed attribute set.

 

U 

P 
C 

G 

Fig. 2. Venn diagram of interest attribute sets for a peer. U is the universe of all
attributes; P is the set of personal attributes; C is the set of claimed attributes; and G

indicates the group attribute

The non-empty set of interest attributes that renders a collection of peers to
become a community is called the signature of that P2P community.

3.2 Peer Links

P2P communities are attribute-based; that is, attributes (claimed and group)
determine the membership of a node in one or more communities. In addition
to attributes we also define an end-to-end overlay network in terms of links.

Links are not necessary to form and manage P2P communities. However, they
are needed to feasibly run low-cost algorithms for formation and discovery, as it is
conceptually and algorithmically simpler to use the notion of a set of neighbors1

when communicating with other peers. To develop a better conceptualization of
the nature of peer links, we explain a case where links are essential.

When node ‘X’ is born, it needs to have one or more logical neighbors. If it
has three neighbors, ‘A’, ‘B’, and ‘C’, then we say that it has three links, X→A,
X→B, and X→C. Unlike the overlay networks used by Distributed Hash-Table
(DHT) based P2P systems, our link based network does not rely on node names,
but on user selected neighbors. A peer, ‘X’ provides the following options that
can be implemented to solve the isolation problem:

1. A special bootstrapping node that is present within each domain.
2. A peer that ‘X’ knows and trusts - a friend.

For a novice/new node, the first option may be the most appropriate. As ‘X’
ages, it finds other nodes and adds these links to improve the search speed and

1 Neighbors are directly linked peers.
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information access. The linkages are similar to friendships in real life, or to http
links in the Web and are directed by humans.

Definition 1. Link weights are given to each claimed attribute of a peer based on

the percentage of links from the peer that can reach, after at most one indirection,

other peers claiming the same attribute.

Link weights are computed after the escalation of attributes (described in
Section 5.1) and are important in determining the membership of a peer in a
community.

4 Modeling a P2P Network

A P2P network can be thought of as a graph where the nodes represent peers
and the edges represent the links between two peers. In this section, we explain
two approaches for generating a realistic P2P network topology that could be
used to simulate our algorithms.

4.1 The Internet as a P2P Network

The pre-cursor to the Internet (Arpanet) was one of the first P2P networks,
which had the ability to connect computers as peers and provide them with
equal rights in sending and receiving packets. Therefore, in order to evaluate our
proposed algorithms, we initially evaluated them on an Arpanet successor - the
Internet - as we know it today. Because it is difficult to make a large number of
computers on the Internet run our programs, we wrote a spider program that
would crawl a subset of the Internet and create a topological map on which we
could simulate our algorithms. The spider program started at a user-specified
website, requested its HTML content, and parsed the HTML code to extract
all the linked websites. It recorded the websites that lay within a pre-specified
domain, such as “asu.edu,” and discarded the rest. Thereafter, the spider recur-
sively visited each website from its recorded list, thus repeating the same steps.
By programming the spider to travel the Internet domain using an Eulerian
path, we could create a map of the web topology, where each node was a website
and edges represented a link from one site to another.

Except for a few changes, the web topology graph that we generated closely
resembled a P2P network since websites are analogous to peers and http links
are manually created and analogous to peer links. One such change required
converting the graph from a directed graph to an undirected graph where the
edges between the nodes represented bi-directional links between peers. The
other reason for this close resemblance was the website content, which was anal-
ogous to a peers interest attributes. Also, the domain specific attribute, such as
“cse.asu.edu,” is equivalent to the group attribute in a P2P network.

Although the web topology graphs demonstrated power-law properties (see
Fig. 3), our calculations for small-world behavior identified a problem. In order
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Fig. 3. The graphs show the power-law distribution of the frequency (X-axis) vs. de-
gree (Y-axis) plot for the web topology graphs of: (A) “asu.edu” domain, and (B)
“umich.edu” domain

for a graph or a network to be considered a small-world network, its charac-
teristic path length must be as low as the path length in random graphs and
its clustering coefficient (CC) must be as high as the CC in regular graphs.
However, both these values were low in our topology graphs. The characteristic
path lengths were 2.46 and 2.32 for asu.edu and umich.edu, respectively; and
the clustering coefficients were 0.28 and 0.32 in the same order. We attribute
this phenomenon to the popular use of increasingly efficient search engines on
the Internet. While a few years ago, a website owner placed http links to fre-
quently visited websites on her website so that they could be easily accessible,
contemporary search engines efficiently locate websites so that many website
owners do not even have to link to the websites of their colleagues and friends
any more. The resulting topology graph therefore showed fewer regular links,
and calculations for clustering coefficient revealed low values.

4.2 Creating Our Own P2P Network

A P2P network comprising of peers that link to known peers is analogous to
social networks, and therefore it should have a high clustering coefficient to
represent the interconnected social links amongst circles of friends. We needed to
provide a mechanism to ensure that our P2P network topology would exhibit the
properties of a small-world network and would also show a power-law distribution
for frequency versus degree.

Our next approach involved enforcing certain rules on new peers that wanted
to join the P2P system. By virtue of these rules, the P2P system that was
formed was a small-world network, which also exhibited a power-law (or scale-
free) characteristic for the distribution of the number of neighbors of each peer.

We were inspired by the work of M. Steyvers and J. Tenenbaum [15] on
semantic networks and extended the domain of their model to a P2P network
that involves peers and links.

The new peer ‘X’ has to follow the rules below in order to join a P2P system:

1. Peer ‘X’ selects a single peer, ‘A’, from a list of known peers (see Section 3.2)
that are currently members of the P2P system, such that ‘A’ is one of the
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Fig. 4. (left) The graph shows the Clustering Coefficient (CC) and the characteristic
Path Length (PL) for various network sizes generated with an initial seed of 2 nodes.
The suffixes P and R indicate P2P and random networks, respectively

Fig. 5. (right) The graph shows the power-law distribution in a frequency (X-axis) Vs
degree (Y-axis) plot of our rules mechanism compared with the well-known “Barabasi”
technique. The network size was 1000 nodes - grown from 2 seed nodes

more well-connected peers, i.e., it has, on the average, more links to other
peers within the P2P system than the other peers from the list.

2. Peer ‘X’ creates links to N neighbors of ‘A’, such that the neighbors of ‘A’
that have more links to other peers are chosen with a higher probability than
the other neighbors.

5 Structuring the P2P Network

We have previously stated two important traits of P2P communities: they are
implicitly formed, and their membership depends on the relationships between
peers that share common interests. Below, we discuss in detail the techniques
that we use to structure peers into communities.

5.1 Attribute Exchange, Escalation and Analysis

The exchange of interest attributes is not required in order to form communi-
ties. In fact, if all peers only tried to form communities based on their claimed
attributes, we could significantly reduce the cost of communication. However, it
is possible that a P2P community with signature ‘S’ might exist. As a result, a
peer that has ‘S’ in its personal attribute set, but does not claim it, will not be
able to join this community and avail of the benefits until it claimed ‘S’.

Peers, therefore, need to expose (escalate from the personal list to the claimed
list) as many attributes as possible in order to join the maximum number com-
munities. This escalation can only be achieved by establishing communication
with other peers.
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After the escalation of attributes, a peer cannot assume to be a member of
a community based on “unescalated claimed attributes”. Only after analyzing
the received interest attributes will a peer be able to discover the two kinds of
communities: (i) the communities that peers are explicitly a part of, by virtue
of their common group attribute or other claimed attributes; and (ii) the com-
munities in which peers become members, by virtue of their claimed attribute
set after escalations.

5.2 Discovering Community Members

Since interest attributes are constantly changing values, the attribute exchange
process needs to occur on a regular basis to keep the P2P system up-to-date and
the peers subscribed to the most suitable, existing communities. Then, again,
a periodic increase in communication messages might not be suitable for low
bandwidth networks, as regular communication will be affected by this increased
traffic. Our solution is to opt for Distributed Discovery and P2P Gossiping. The
nature of the Distributed Discovery algorithm enables a peer to become aware
of the following information: (1) the approximate size of its communities, (2) the
other community members, and (3) various profile information of the member
peers, such as peer involvement values, and claimed interest attributes for each
peer.

In addition to link weights, peers have involvement values associated with
every community in which it is a member. Involvement is proportional to the
number of peers in the neighborhood2 that claim the signature attributes of a
particular community. Therefore peers with a higher value of involvement associ-
ated with a community such as ‘C’, have more peers within their neighborhood
that are also members of ‘C’. We use the term seers when referring to these
peers.

In [14] we have shown that information stored on the seers will be available
to a large percentage of peers within the community. The Distributed Discovery
algorithm described in the same paper was also shown to be a low overhead,
simple protocol that was resilient to failures and delays in peers. The protocol
used vectors traveling a Hamiltonian path, and it terminated easily. If random
peers initiated this protocol within their communities, the end result would be a
well-structured P2P network, with peers being aware of the configuration of their
communities. Below we describe a variation of the distributed discovery protocol
that is bound by a maximum hop-count for discovery in very large communities.

Hop-bound Distributed Discovery For communities that are extremely
large, the Distributed Discovery algorithm will require a long time to conclude.
Therefore the initiator will have to remain online for a long time to receive in-
coming vectors. To overcome this obstacle, we propose an alternative hop-bound
Distributed Discovery that works by sending a maximum hop count (h) value
along with the vector so that a sub-set of the community can be discovered. At

2 The neighborhood of a peer includes neighboring peers and their neighbors.



10 Mujtaba Khambatti et al.

a later stage, a merging algorithm can be executed for the purpose of combining
various sub-sets into one community.
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Fig. 6. The above graph shows the increasing percentage of the community discovered
as the value of hop count increases. Note that the behavior of the hop-bound distributed
discovery is linear. The test was conducted on a network with 4,500 nodes

The merging algorithm can be executed as a low priority activity, which is
not essential to the operation of algorithms, such as community-based search.
That being said, the merging algorithm helps structure the P2P network so that
the search algorithm will work more efficiently. Fig. 7 below shows the cases that
might occur during the hop-bound discovery of a community. Following Fig. 7
is the construct of the merging algorithm:

Case 1: There exists more than one initiator within h hops. If the initiators have
neighbors within or beyond h hops, then by virtue of the Distributed Discovery
algorithm, the vector with the lower identification number survives, and remains
as the only initiator in the community until the process is terminated. The ousted
initiator knows the identity of the extant initiator. All the results sent to the
ousted initiator are forwarded to the extant initiator of the community.

Case 2: There exists more than one initiator beyond h hops. If the end vectors
received by the initiator indicate that the hop count has been reached, then there
could be some potential community members beyond h, who might have been in-
volved in their own hop-based discovery. The initiator therefore sends a message
to the peers that sent the end vectors requesting them to obtain the identity of
the initiator from their neighbors that were not involved in this particular dis-
covery. The initiator with the lowest peer identification value takes over as the
new initiator of the merged community. However if no such initiator is found,
then this operation of locating an initiator beyond h is repeated periodically so
that eventually a merge operation will take place.
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Fig. 7. The figures portray the two cases that might occur during a hop-bound dis-
tributed discovery. The large ellipse that encloses everything indicates the actual size
of a community (h = ∞). The smaller ellipses indicate sub-sets of the community
(h ∈ IN), where IN is the set of natural numbers that are discovered. Peers (gray cir-
cles) and their links (connecting edges) are shown in the figure. Initiating peers are
marked with concentric circles

Obtaining Bloom Filter Summaries Bloom filters [16] are compact data
structures that probabilistically represent the elements of a set. They support
queries of the form, “Is X an element of the represented set?” and at the current
stage, they have been used in a variety of ways [17–20].

We extend our proposed Distributed Discovery protocol further by gathering
Bloom filter summaries from each participating peer. The initiator creates a
Bloom filter from its claimed attributes and sends it along with the vector. Each
peer that receives the vector and the filter creates its own Bloom Filter and
merges it into the existing filter. After the end vectors and filters are received,
the initiator merges all the filters, forming, in this manner, a Bloom Filter that
represents a compact summary of the attributes claimed by the peer members
of a particular community.

In order to reduce the rate of false positives that result from the probabilistic
nature of these data structures, we chose k = 8 hash functions and set the Bloom
Filter size to m = 2048 bits. Based on formula (1) (described in [21], and [22]),
we get: perr ≈ 1.E−05 for n = 70 possible claimed attributes.

perr ≈
(

1 − e−
kn

m

)k

(false positives) (1)

The reasons for this modification are justified in the next section where we
employ the Bloom Filter for a Community-Based Search algorithm.

Pseudo-Code for Constructing the Bloom Filter

Start-prog



12 Mujtaba Khambatti et al.

bloomFilter = new bool[m] initialized to false

Foreach attribute in Claimed Attribute List

Foreach hashFunction hi

bloomFilter[hi(attribute)] = true

End-for

End-for

End-prog

Pseudo-Code for Merging Bloom Filters

Start-prog

mergedFilter = new bool[m] initialized to false

Foreach bFilter in List of Bloom Filters to merge

Foreach bElement in bFilter

i = bloomFilter.IndexOf(boolElement)

mergedFilter[i] = mergedFilter[i] bit-OR bElement

End-for

End-for

End-prog

6 Community-Based Search

Our solution for searching P2P networks takes advantage of the self-organization
of peers and their capacity to implicitly form communities. In this section, we
briefly describe the mechanics of our search technique and provide some prelim-
inary comparisons with known search algorithms.

6.1 Constructing the Search Query

Any peer that needs to search the P2P network constructs a three-part search
query containing: (1) the identity of the peer creating the query, (2) the actual
query for an item, and (3) a list of meta-information that describe the item.
Meta-information descriptions are analogous to adding the word “television”
after “Japanese” while doing an Internet search in order to narrow the search
for Japanese televisions.

In an interest-based P2P network, such as the digital library from Section
2.3, a peer might use interest attributes as meta-information to a query. For
instance, if the query is for “Vampires,” the list of meta-information might in-
clude attributes such as, “Twentieth century,” “Bram Stoker,” and “European
authors”.

6.2 Processing the Query

To facilitate the search operation, the query is sent to the peer PS that is most
likely to either solve the query or know some peer that can solve it. In our digital
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library example, a solution to a query could mean that the peer either owns the
requested books or can provide information about the peer that owns them. As
previously mentioned, this approach is markedly different from the traditional
P2P search techniques. The peer PS is chosen if it is a seer within the appropriate
communities. At the end of Section 5, we described how Bloom filter summaries
of claimed attributes were obtained for a particular community. At the current
stage, the bloom filters are consulted to determine whether a peer claims any
attribute from the meta-information list of the query. False positives can occur,
thus increasing the overhead of locating PS .

After the query is constructed, it is sent to the closest peer PS that is also
a seer in a community whose signature contains at least one attribute from the
meta-information list. If the querying peer PQ matches this description, then it is
chosen to process the query. Else, PQ looks for PS from its immediate neighbors.
In the case that PS is not located, PQ asks its neighbors to provide the identity
of PS . In the P2P networks generated using the rules described in Section 4.2, we
found that the latter case occurs about 32% of the time. In addition, we found
that PS is almost always located after asking the neighbors. The cost involved
in locating PS is amortized over a number of queries because peers remember
the identities of the closest peers that are seers of a particular community.

The query is then sent to PS to be placed on the blackboards for the commu-
nities in which it is a seer and whose signatures contain at least one attribute
from the query’s meta-information list. Blackboards are similar to web pages and
are independently maintained by a peer. Any peer can view the content on the
blackboard of any other peer, provided that it knows the identity of that peer
so that the blackboard can be reached. Peers maintain separate blackboards for
each community in which they are members.

6.3 Checking Blackboards

Periodically and asynchronously, for each community C that it is a member, a
peer visits the blackboard for C, which is maintained by each of its neighbors
who are also members of C. If the visiting peer can solve any of the queries on
the blackboard, then a message is created and sent to the peer that created the
query. The message created could be sent via email to the querying peer.

Regardless of the outcome of the above procedure, the visiting peer copies the
queries and places them onto its own blackboard for the community C. Our ex-
periments revealed that even such an asynchronous, background communication
amongst peers results in quick and efficient solutions to queries.

6.4 Simulation Results

We simulated the Community-Based Search (CBS) operation over a P2P net-
work created by the rules described in Section 4.2. A set (10% of available peers)
of random peers was selected to create queries. The details of the queries were
randomly generated from a list of 25 known attributes. On an average, a query
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had 3 attributes in the meta-information list. The performance of CBS was eval-
uated against the performance of two well-known search techniques: (1) Gnutella
search, a hop-limited breadth-first search of the P2P network beginning from the
querying peer; and (2) Hub search, a hop-limited search like Gnutella, except
that only one peer, selected for having the maximum number of neighbors, is
forwarded the query each time.

In the digital library, the participating peers created two kinds of queries for
books: (1) queries containing the title of the book; and (2) queries containing
partial book contents or genre descriptions. CBS can operate using either type
of query. Our tests were performed using queries that are of type (2). Therefore
a solution to a query contained a list of all the peers that matched as many genre
descriptions as possible, implying that the peers were likely to be members of
the communities C = {C1, . . . , Cn} whose member/s owned the requested book.

The parameters with which the search techniques were evaluated are: (1) the
number of messages required for each search method, and (2) the quality of the
solution, which is a measure of the number of peers found that are likely to be
members of the maximum communities in C, i.e. the peers found have high link
weights for the attributes that matched the genre descriptions.
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Fig. 8. Evaluation based on number of messages for search operation as the number
of querying peers increases (X-axis). The results are the average values of 5 separate
tests

Fig. 8 shows that CBS consistently requires fewer messages in order to process
the queries. Furthermore, CBS scales well when the number of queries increases.
On the other hand, the number of messages generated during the Hub-search
method (Hub) begins to increase rapidly as more queries are created, because
each hub forwards queries to all of its neighbors. Although the Gnutella (Gnu)
technique exhibits linear behavior (since hop-limit was set at 5), it still does not
out perform CBS in terms of number of messages generated.

Higher link weights (in fig. 9) for attribute ‘A’ indicate a higher probability
that the peer is a member of a community of peers that claim attribute ‘A’. For
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most attribute values, CBS finds a peer with higher link weights than the other
two techniques.
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Fig. 9. The graph above displays the link weights of the peers found by the various
search techniques. The X-axis of the graph corresponds to the attributes converted to
an integer value ranging from 0 to 24

7 Conclusion

Peer-to-peer networks are autonomously created, self-organizing, decentralized
systems that appeal to everyday home computer users. We have shown that
these networks can be organized into interest-based communities using simple
formation and discovery algorithms. We explained how a P2P network topol-
ogy can be generated, and then illustrated our techniques for structuring the
P2P network. Finally, we described the community-based search protocol that
exploits this arrangement of the P2P network in order to provide better search
operations. The results of our simulations showed that community-based search
used fewer messages and found peers that were more likely to solve the query
than two other well-known search techniques.
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