PUNE INSTITUTE OF COMPUTER TECHNOLOGY

Mobile Agents

The Next Generation In Distributed Computing

B.E.II Roll.219

Class of 1999

Mujtaba Khambatti
Abstract

One of the paradigms that has been suggested for allowing efficient access to remote resources is mobile agents. A mobile agent is a named program that can migrate from machine to machine in a heterogeneous network. The program chooses when and where to migrate. It can suspend its execution at an arbitrary point, transport to another machine and resume execution on the new machine. Mobile agents have several advantages over the traditional client/server model. Mobile agents consume less network bandwidth and do not require a connection between communicating machines -- this is attractive in all networks and particularly attractive in systems that do not have permanent network connections, such as mobile computers, personal digital assistants and wireless networks. Mobile agents are a convenient paradigm for distributed computing since they hide the communication channels but not the location of the computation. Mobile agents allow clients and servers to program each other. However mobile agents pose numerous challenges such as security, privacy and efficiency. Agents are written in a script language that supports agent relocation and agent interpreter processes the language at each host. Electronic mail and UNIX remote shell (rsh) are being used as the two current transport mechanisms.

contents

[image: image1.png]introduction

This report explains a new communication paradigm, the mobile agent, which promises to revolutionerize public networks.

[image: image2.png]what is an agent ?

The word agent has found its way into a number of technologies. There are agent development toolkits and agent programming languages. It is a branch on the tree of distributed computing. However, there are several schools of thought on what the term agent really means. For example, in the context of artificial intelligence, an agent is often described as an autonomous, intelligent entity: they can make decisions and perform actions based on perceived inputs in order to achieve some goal (Russell, S., and P. Norvig, Artificial Intelligence: A Modern Approach, 1995). Mobility is a common characteristic of many agent definitions. A mobile agent is an active object that can move both data and functionality (code) to multiple places within a distributed system. A Mobile Agent has inherent navigational autonomy and can ask to be sent to some other nodes. It doesn't matter what the ultimate purpose of the agent is or whether or not it can be classified as "intelligent."

A mobile agent should be able to execute on any machine within a network, regardless of the processor type or operating system. In addition, the agent code should not have to be installed on every machine that the agent could potentially visit; it should move with the agent's data automatically. Therefore, it is desirable to implement agents on top of a mobile code system, such as the Java virtual machine (VM). The dynamic nature of Java classes and objects, combined with advanced networking capabilities, makes Java highly qualified for use as a mobile agent platform. Just as an applet's classes are loaded dynamically from the Web server into the browser, an agent's classes are loaded at runtime over the network as it travels from one location to another.

[image: image3.png]Why mobile Agents ?

Agents make an interesting topic of study because they draw on and integrate so many diverse disciplines of computer science, including objects and distributed object architectures, adaptive learning systems, artificial intelligence, expert systems, genetic algorithms, distributed processing, distributed algorithms, collaborative online social environments, and security, just to name a few.

[image: image4.png]Agent technology is significant because of the sustained commercial interest surrounding it. General Magic’s Telescript, IBM's Aglets Workbench (now called IBM Aglets SDK) and Mitsubishi's Concordia may not have hit prime time quite yet, but they do seem to be gathering their share of investment money. Agent technology is also interesting for its potential to solve some nagging productivity problems that pester almost all modern computer users. Many agents are used as intelligent electronic gophers - automated errand boys. Tell them what you want them to do: search the Internet for information on a topic, or assemble and order a computer according to your desired specifications, and they'll do it and let you know when they've finished.

Figure 1: Mobile agent abstraction - an agent jumps from machine to machine and interacts with resources on each machine. In this case an active E-mail message has jumped to interact with a router and will jump again to interact with the recipient's mailbox. This figure was adapted from [12].

when to use an agent architecture ?

[image: image5.png]If client-server systems are the currently established norm and distributed object systems such as CORBA are defining the future standards, why bother with agents? Agent architectures have certain advantages over these other types. Three of the most important advantages are:

1. An agent performs much processing at the server where local bandwidth is high, thus reducing the amount of network bandwidth consumed and increasing overall performance. In contrast, a CORBA client object with the equivalent functionality of a given agent must make repeated remote method calls to the server object because CORBA objects cannot move across the network at runtime.

2. An agent operates independently of the application from which the agent was invoked. The agent operates asynchronously, meaning that the client application does not need to wait for the results. This is especially important for mobile users who are not always connected to the network.

3. The use of agents allows for the injection of new functionality into a system at run time. An agent system essentially contains its own automatic software distribution mechanism. Since CORBA has no built-in support for mobile code, new functionality generally has to be installed manually.

Of course a non-agent system can exhibit these same features with some work. But the mobile code paradigm supports the transfer of executable code to a remote location for asynchronous execution from the start.

An agent architecture should be considered for systems where the above features are primary requirements.

[image: image6.png] mobile agent paradigm

Current approach

The central organizing principle of today's computer communication networks is remote procedure calling (RPC). Developed by Sun Microsystems Incorporated, the RPC approach views computer-to-computer communication as enabling one computer to call procedures in another. Each message that the network transports either requests or acknowledges a procedure's performance. A request includes data that are the procedure's arguments. The response includes data that are its results. The procedure itself is internal to the computer that performs it. Two computers whose communication follows the RPC approach agree in advance upon the effects of each remotely accessible procedure and the types of its arguments and results. Their agreements constitute a protocol.

example

A user computer with work for a server to accomplish orchestrates the work with a series of remote procedure calls. Each call involves a request sent from user to server and a response sent from server to user. For example, to delete from a file server all files at least two months old, a user computer might have to make one call to get the names and ages of the user's files and another for each file to be deleted. The analysis that decides which files are old enough to delete is done in the user computer. If it decides to delete n files, the user computer must send or receive a total of 2(n+1) messages.

The salient characteristic of remote procedure calling is that each interaction between the user computer and the server entails two acts of communication, one to ask the server to perform a procedure, and another to acknowledge that the server did so. Thus ongoing interaction requires ongoing communication.

New approach

An alternative to remote procedure calling is remote programming (RP). The RP approach views computer-to-computer communication as enabling one computer not only to call procedures in another, but also to supply the procedures to be performed. Each message that the network transports comprises a procedure that the receiving computer is to perform and data that are its arguments. In an important refinement, the procedure is one whose performance the sending computer began or continued, but that the receiving computer is to continue; the data are the procedure's current state.

 Two computers whose communication follows the RP approach agree in advance upon the instructions that are allowed in a procedure and the types of data that are allowed in its state. Their agreements constitute a language. The language includes instructions that let the procedure make decisions, examine and modify its state, and, importantly, call procedures provided by the receiving computer. Such procedure calls are local rather than remote. The procedure and its state are termed a mobile agent to emphasize that they represent the sending computer even while they are in the receiving computer.

example

A user computer with work for a server to accomplish sends to the server an agent whose procedure there makes the required requests of the server (for example, 'delete') based upon its state (for example, 'two months'). Deleting the old files of the previous example - no matter how many - requires just the message that transports the agent between computers. The agent, not the user computer, orchestrates the work, deciding 'on-site' which files should be deleted.

The salient characteristic of remote programming is that a user computer and a server can interact without using the network once the network has transported an agent between them. Thus ongoing interaction does not require ongoing communication. The implications of this fact are far reaching.

CURRENT APPROACH

Figure 2. The Client-Server model abstracted above is best suited for fast permanent networks, like Ethernet. It involves a number of interactions as described earlier.

NEW APPROACH

Figure 3. The Mobile Agent Paradigm abstracted above indicates the efficiency of the system over Client-Server models in public networks like the Internet, wireless communication and other networks with low bandwidth.

Characteristics of Mobile Agents

2.3.1. MOBILITY

Mobility is a desirable characteristic in agents for a number of reasons:

1) Efficiency.

Agents that can move across networks to the location where resources reside, can reduce the network traffic since they can preprocess data and decide which is the most important information to transfer. This is a crucial aspect when considering users who connect through a low bandwidth link.

2) Persistence.

Once a mobile agent is launched, it should not be reliant on the system that launched it and should not be affected if that node fails. This is useful for mobile computer users due to the fact that they can log on, launch an agent, log off and check later on its progress.

3) Peer-to-peer communication.

A failure of the client/server paradigm is the inability of servers to communicate. Mobile agents are considered to be peer entities and, as such, can adopt whichever stance is most appropriate to their current needs. For example, when a mobile agent is interrogating a resource it takes the role of a client. However, when another mobile agent wishes to query it, then it becomes a server. This allows for great flexibility in dealing with network entities and distributed resources.

4) Fault tolerance.

In a client/server relationship, the state of the transaction is generally spread over the client and the server. In the event of a network or server failure during a request, it is difficult for the client to reclaim the situation and re-synchronize with the server because the network connection will have been lost. However, since mobile agents do not need to maintain permanent connections and their state is centralized within themselves, failures are generally easier to deal with.

2.3.2. MIGRATION

As has already been stated, mobility is the characteristic that allows agents to move between network nodes, but migration is the function which controls how this transfer is achieved. Although a mobile agent is essentially an executing process, the governing factor that distinguishes it from a normal process is the fact that not all of its instructions have to be executed on the same node.

Just as a mobile agent is fundamentally different to a process, so too is agent migration different from process migration; the difference lies in who decides where and when to move. In process migration, migration is normally forced upon a process by the system, due to resource location, load balancing and other similar factors. This is generally a complex and intensive operation. With mobile agents, it is the agent who decides when to move and the underlying infrastructure must support and execute this request. Enforced migration can only be effected upon an agent in extreme circumstances, for example, if the agent attempts to perform a forbidden action.

The dominant approach to moving agents between network nodes is:

State-oriented.

This system allows agents to move at any point in their execution, usually through a mobility imperative (go, jump or move). After this command, the current state of the agent is encapsulated and transferred across the network to the receiving network node. Once received, execution of the agent resumes at the instruction following the mobility imperative.

Figure 4. Migration lets an agent obtain a service offered remotely. Here an agent travels from the users communicator to meet with an agent at the ticket place where it will communicate the users requirements and if permitted, negotiate and pay for some tickets.
2.3.3. DATA ACQUISITION

Mobile agents interrogate their local environment to acquire the information necessary to achieve their goals. This information needs to be filtered locally by the agent before it is either stored with the agent or forwarded to some receiving destination (such as the original network node of the agent). Therefore, mobile agent systems need to have an appreciation of the resources with which they are working.

2.3.4. ROUTE DETERMINATION

Once an agent has finished with a network node, it must make a decision of where to move to next. The acquisition of data leading to this decision can be derived by one of three methods:

1) Predetermination.

This is where the agent is given the destinations that it must visit when it is launched. This is useful in situations where the activities of an agent need to be carefully controlled or where the order in which network nodes are visited is important.

2) Dynamic determination.

In this method, the agent is given complete freedom over the network nodes that it can visit. The mobile agent may simply make a random choice, which is quite difficult unless it knows what nodes are available, or it may make a decision based upon its own node-knowledge history or information gained from other agents. This type of freedom is useful for data mining agents where a wide field of interrogation is required.

3) Hybrid determination.

This is an amalgamation of pre- and dynamic determination methods. This is useful in situations where the speed (and maybe quality) of data return is more important that the depth of data covered.

2.3.5. COMMUNICATION

The ability for agents to communicate is fundamental to mobile agent systems. There are two methods for agent communication to take place:

1) Network-oriented.

Agents communicate through some network-based mechanism, such as message passing. This means that the communicating parties do not have to be residing on the same node or even on the same network.

2) Node-oriented.

Agents communicate through some local inter-process communication mechanism, such as files, shared memory or anonymous pipes. This means that the communicating parties must be currently executing on the same network node.

Additionally, communication can take place in two basic forms:

3) Synchronously.

The communicating parties must arrange for a time to communicate and must synchronize before data can be transferred. This is typically used for situations where data transfer is important and needs to be confirmed or there is to be some interactive dialogue, for example, agents querying each other's knowledge bases.

4) Asynchronously.

The communicating parties can communicate with each other at will: the data is received as the receiving party checks for it. This is a much lazier approach than synchronous communication and is generally used for transferring informative data.

The parties that a mobile agent may wish to converse with include:

a. Local environment.

b. Other agents.

c. Users.

agent technology

New communication paradigms beget new communication technologies. Mobile agent technology has three major components: an agent programming language, which lets application developers program agents and the places they visit (or at least the 'facades' of those places); an agent system, which provides a virtual machine for the language and manages the agents’ and places’ execution; and agent protocols, which let agent systems in different computers exchange agents in fulfillment of the go instruction.

Agent language

Moving software programs between computers by means of a network has been commonplace for 25 years or more. Using a local area network to download a program from the file server where it's stored to a personal computer where it must run is a familiar example. What's unusual is moving programs while they run, rather than before. A conventional program, written for example in C or C++, cannot be moved under these conditions because neither its procedure nor its state is portable. An agent programming language makes it possible for a computer to package an agent - its procedure and its state alike - for transportation to another computer. The language lets the agent decide programmatically when in the procedure's performance such transportation is required.

An agent programming language lets the developers of communicating applications define the algorithms that agents follow and the information that agents carry as they travel the network. It supplements systems programming languages such as C and C++. While entire applications could be written in the agent language, the typical application is written partly in a more conventional language. The conventional parts of the application include the stationary software in user computers that lets users and agents interact, and the stationary software in servers that lets places interact, for example, with databases. The agents and the ‘surfaces’ of the places they visit are written in the agent language.

An agent script (written by a programmer) is submitted to an agent generator program, which produces an interpretable script. An interpretable script contains the text of the agent script plus information, such as variable values, that represents the current execution state of the script. The interpretable script is then submitted to an agent interpreter, which processes the statements of the script. If a moveto / go statement is encountered, the agent interpreter packages the agent for transport. This produces another interpretable script with updated state information. This interpretable script is then sent via the transport mechanism to another host for execution. The process repeats itself until the end of the script is reached. Normally, an agent will transport itself back to its original host so it can output any information it has collected.

EXAMPLE – The GO Instruction
To travel from one place to another an agent executes the go instruction, an instruction unique to an agent programming language. The instruction requires a ticket, data that specify the agent's destination (by name, address, type, or a combination of these things) and the other terms of the trip (for example, the means by which it must be made and the time by which it must be completed). If the trip cannot be made (for example, because the means of travel cannot be provided or the trip takes too long), the go instruction fails and the agent handles the exception as it sees fit. However, if the trip succeeds, the agent finds that its next instruction is executed at its destination. Thus in effect an agent programming language reduces networking to a single instruction.

 Qualities of an Agent Programming Language

An agent programming language may take different forms for different purposes. Agent developers might see a high-level, compiled language while agent systems might deal with a lower-level, interpreted language. A compiler would translate between the two.

We can summarize the qualities of an Agent Programming Language, which will facilitate the development of communicating applications.

1)
Complete. Any algorithm can be expressed in the language. An agent can be programmed to make decisions; to handle exceptional conditions; and to gather, organize, analyze, create, and modify information.

2)
Object-oriented. The programmer can define classes of information, one class inheriting the features of others. The language predefines classes of a general nature - for example, Agent. Developers of communicating applications define classes of a specialized nature, such as a Theater Agent or a Flower Agent.

3)
Dynamic. An agent can carry an information object from a place in one computer to a place in another. Even if the object's class is unknown at the destination, the object continues to function: its class goes with it.

4)
Persistent. Wherever it goes, an agent, the information it carries and even the program counter marking its next instruction, are safely stored in nonvolatile memory. Thus the agent persists despite computer failures.

5)
Portable and safe. A computer executes an agent's instructions through the virtual machine associated with an agent system, not directly. An agent can execute in any computer in which an agent system is installed; yet it cannot directly access its processor, memory, file system, or peripheral devices. This helps prevent viruses.

6)
Communication-centric. Certain instructions in the language, several of which have been discussed in this paper, let an agent carry out complex networking tasks, such as transportation, navigation, authentication, access control, and so on.

Agent system

An agent system is a software program that implements an agent programming language by maintaining and executing places within its purview, as well as the agents that occupy those places. An agent system in a user computer might house only a few places and agents. The agent system in a server might house thousands.

At least conceptually, the agent system draws upon the resources of its host computer through three application programming interfaces (APIs). The Storage API lets the agent system access the nonvolatile memory it requires preserving places and agents in case of a computer failure. The transport API lets the agent system access the communication media it requires to transport agents to and from other agent systems. The external application API lets the parts of an application written in the agent programming language interact with those parts written more conventionally.

Agent protocols

Agent protocols enable two agent systems to communicate in order to transport agents between them in response to the go instruction. The protocol suite can operate over a wide variety of transport networks, including those based on the TCP/IP protocols of the Internet, the X.25 interface of the telephone companies, or even electronic mail.

The agent protocols operate at two levels. The lower level governs the transport of agents. The higher level dictates their encoding, or serialization, and their subsequent decoding, or de-serialization. Loosely speaking, the higher-level protocol occupies the presentation and application layers of the seven-layer Open Systems Interconnection (OSI) model.

The agent serialization rules specify how an agent system encodes an agent - its procedure and state - as binary data and how the agent system sometimes omits portions of the encoding to optimize performance. Although agent systems are free to maintain agents in different formats for execution, they must use a standard format for transport.

The agent transport protocol specifies how two agent systems first authenticate one another (for example, using public key cryptography) and then transfer an agent's encoding from one system to the other. The agent transport protocol is a thin veneer of functionality over the underlying data transport protocol (for example, TCP/IP).

Notions of Agency

Agency is concerned with the characteristics and attributes that can be assigned to agents to determine their nature and to predict their behaviour. An agent whose nature is well defined and whose behaviour is predictable is more likely to be of use and to be trusted by the user.

Types of Agents

4.1.1. THE USER INTERFACE AGENT

An interface agent is a personal assistant who is collaborating with the user in the same work environment. Thus, interface agents assist the user in whatever tasks they are performing, maybe to provide insight into specific situations or to provide alternative material into related areas of work.

 4.1.2. THE INFORMATION AGENT

An information agent is one that has access to a number of information resources and is able to collect and manipulate that information. Typically, it can communicate across the network to locate information resources to query or manipulate. An example might be where an information agent is asked to find a particular paper; the information agent searches a number of information resources and presents the user with FTP sites and WWW addresses.

The key qualities of information agents lie in their ability to communicate with a large range of information resources to ensure that the widest amount of information is processed to provide the user with the best results. Generally, an information agent will possess some of the characteristics of an interface agent, in that they will have to develop and maintain a user profile to determine how to best deliver the information that a user needs to reduce information overload. However, a key criticism of current information agents is that they are concentrating on retrieving and summarizing information for their users, but are not actively assisting them in managing it.

4.1.3. THE DISTRIBUTED ARTIFICIAL INTELLIGENCE AGENT

Distributed artificial intelligence agents are collective agents which together sit at the macro (social) level, rather than the micro (agent) level. Distributed artificial intelligence looks at how problems at the macro level can be broken down into agents at the micro level and how those agents can be made to co-operate, negotiate and co-ordinate their activities to ensure that the problems are solved efficiently.

Other goals of distributed artificial intelligence research include:

· Solving problems that are too large or too risky for one centralized agent.

· Allowing for the interconnection and interoperation of various systems, especially legacy systems such as expert systems, decision support systems, and so on.

· Providing solutions to inherently distributed problems, for example where data or control is distributed.

However, a key problem with distributed artificial intelligence is ensuring that problem decomposition and subsequent communication and discussion between communities of agents can take place timely enough to produce useful and achievable results.

4.1.4. DOMAIN AGENT

A domain agent is a stationary agent that supervises certain activities which can occur within a domain.

4.1.5. RESOURCE AGENT

Resource agents are stationary agents that exist within a domain to provide a level of abstraction between a resource and mobile agents. The purpose of a resource agent is to mediate access to a particular resource for a mobile agent; the resource agent understands how to access the resource and also understands the permission structures associated with the resource.

 Mobile Agent Systems

The following section discusses the most prevalent systems currently available.

Agent TCL

The Agent TCL system is a model for supporting transportable (mobile) agents that is being developed within the Department of Computer Science at Dartmouth College. The architecture of Agent TCL is based upon the server model advocated by Telescript and the initial language implementation is centered around an augmented form of the Tool Command Language (TCL). The architecture consists of four levels, as illustrated in the figure. Agents, transportable or stationary provide all services that are available within the system. Agents can be written in a language that supports interpretation, such as TCL or Java.

TACOMA

Tromosø And COrnell Moving Agents (TACOMA) is a joint project that is being developed by the University of Tromosø and Cornell University and is primarily concerned with providing operating system support for agents. The latest prototype uses TCL/HORUS, which is a version of the TCL scripting language that uses HORUS to provide group communication and fault tolerance.

TACOMA uses a folder as the essential unit of data that is accessible by an agent; folders can be stored in filing CABINETS, which are stationary data repositories, or in briefcases which are containers that agents carry with them.

TELESCRIPT

Telescript is a commercial product developed by General Magic Incorporated to support mobile agents for an electronic marketplace. The language is an object-oriented programming language in which state-oriented migration is seen as the basic operation which is provided by the go instruction and a ticket argument that determines the destination site in "varying levels of specification". A Telescript engine exists at each site to accept and authenticate migrating agents and to restart the execution of agents at the statement immediately after the go command.

 a comparative study

This section will attempt to explore the advantages of the Mobile Agent model over the existing Client-Server Model, and especially so in context with public networks.

Tactical advantage

The tactical advantage of remote programming is performance. When a user computer has work for a server to do, rather than shouting commands across a network, it sends an agent to the server and thereby directs the work locally rather than remotely. The network is called upon to carry fewer messages. The more work to be done, the more messages remote programming avoids.

The performance advantage of remote programming depends in part upon the network: the lower its throughput or availability, or the higher its latency or cost, the greater the advantage. The public telephone network presents a greater opportunity for the new approach than does an Ethernet. Today's wireless networks present greater opportunities still. Remote programming is particularly well suited to personal appliances, whose networks are presently slower and more expensive than those of personal computers in an enterprise. It is also well suited to personal computers in the home, whose one telephone line is largely dedicated to the placement and receipt of voice telephone calls.

A home computer is an example of a user computer that is connected to a network occasionally rather than permanently. Remote programming allows a user with such a computer to delegate a task - or a long sequence of tasks - to an agent. The computer must be connected to the network only long enough to send the agent on its way and, later, to welcome it home. The computer does not need to be connected while the agent carries out its assignment. Thus remote programming lets computers that are connected only occasionally do things that would be impractical with remote procedure calling.
Strategic advantage

The strategic advantage of remote programming is customization. Agents let manufacturers of user software extend the functionality offered by manufacturers of server software. Returning to the filing example, if the file server provides one procedure for listing a user's files and another for deleting a file by name, a user can add to that repertoire a procedure that deletes all files of a specified age. The new procedure, which takes the form of an agent, customizes the server for that user.

The remote programming approach changes not only the division of labor among software manufacturers but also the ease of installing the software they produce. Unlike the standalone applications that popularized the personal computer, the communicating applications that will popularize the personal appliance have components that must reside in servers. The user must statically install the server components of an RPC-based application. The server components of an RP-based application, on the other hand, are dynamically installed by the application itself. Each is an agent.

To Summarize

Mobile agents offer a better paradigm because of the following reasons…
· EFFICIENCY
Mobile agents consume fewer network resources since they move the computation to the data rather than the data to the computation.

· FAULT TOLERANCE

Mobile agents do not require a continuous connection between machines.

· CONVENIENT PARADIGM
Mobile agents hide the communication channels but not the location of the computation.

· Customization
Mobile agents allow clients and servers to extend each other's functionality by programming each other.

There are many alternative techniques -- queued RPC, proxy servers, etc. -- that have many of these same advantages. The problem with these alternative techniques is that each one is only suitable for certain applications. A mobile-agent system on the other hand is a single, unified framework in which a wide range of distributed applications can be implemented easily and efficiently.

Future Work

"Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and perhaps weigh 1½ tons"

- Popular Mechanics, March 1949

Agent Framework Architecture

A choice needs to be made whether to advocate the use of an existing mobile agent system (such as Agent TCL), or whether to develop a new mobility infrastructure from scratch. The arguments for reusing an existing system are persuasive, since the underlying migration and communication layers are already developed and available. However, the system that is chosen should exhibit the following characteristics:

· STATE-ORIENTED MIGRATION.

The reduction of migration to a single instruction that packages the agent automatically, transfers the agent and restarts the agent on the instruction after the movement imperative.

· Extensible architecture.

To allow new features to be added, for example, extended security and other communication models. Additionally, the system chosen should allow new protocols and languages to be integrated seamlessly; unlike Telescript which only supports the Telescript language.

· FLEXIBLE SECURITY MODEL.

To allow the security model to change according to the environment.

· Inherent heterogeneity.

To allow the mobile agent framework to be accessible on as many platform types and across as many networks as possible.

Agent Programming Language

Once an architecture has been selected, then a programming language will need to be chosen to implement the framework. It is commonly accepted that interpreted languages, often referred to as scripting languages, represent the best implementation to achieving heterogeneity and enforcing validation principles.

The following is a brief summary of the current interpreted languages that hold the most promise for developing the agent framework:

•
Java. Java, developed by Sun Microsystems Incorporated, is an object-oriented language that is very reminiscent of C++. Java code is compiled to platform-independent byte code for portability, but migration and dynamic extensibility of byte code are not explicitly supported. The object-oriented nature of the language makes it highly desirable, since a generic agent class could be developed and other agent types (for example, a domain agent) could be specializations upon that class, for example, the JavaAgentTemplate.

•
Telescript. The Telescript architecture, as developed by General Magic Incorporated, is also an object-oriented programming language. However, Telescript has inbuilt support for code migration and explicit support for the dynamic extensibility of objects.

•
Tool Command Language. TCL (pronounced ‘tickle’) was originally designed to perform the tasks of traditional scripting languages; the creation of macros or code segments that link compiled applications together. However, more recently, TCL has been proposed as a language for writing mobile agents. Unfortunately, since TCL is a scripting language, its inherent support for migration and dynamic extensibility is non-existent. Also, since the language is interpreted directly from source code it is also disadvantaged, due to the fact that it may not be wise to allow other people to inspect the source code of agents. However, despite these disadvantages, TCL is being used and a proposal has been put forward for a safe version of the language, called Safe TCL.

Conclusion
Mobile Agents are a more efficient means of accessing remote resources than traditional client/server models. However existing research into Mobile Agents has two weaknesses. There has been no formal characterization of the relationship between network, data and agent characteristics and agent performance. In addition current implementations focus on certain technical challenges to the exclusion of others.

No agent system should be deployed without a robust security mechanism in place. After all, an agent host is letting an active object (the agent) run within its address space. (A computer virus is essentially a malicious mobile agent.) Trust must be established between the agent and the host. A host must be able to recognize an agent's identity and then enforce appropriate constraints on what the agent is allowed to do based on its access privileges. Likewise, an agent must insure that a host that is to be visited is not a spoofed version of the host waiting to capture the agent and compromise the information contained within.

Appendix A: Figures

Table Of Figures

Figure
Associated text
Page

1.
Mobile agent abstraction - an agent jumps from machine to machine and interacts with resources on each machine…
4

2.
The Client-Server model abstracted above is best suited for fast permanent networks, like Ethernet…
8

3.
The Mobile Agent Paradigm abstracted above indicates the efficiency of the system over Client-Server models…
8

4.
Migration lets an agent obtain a service offered remotely. Here an agent travels…
10

5.
The Agent Language Part combines with a more conventional language to deliver Agent functionality…
14

6.
Development of an Agent
14

7.
Agent System
16

8.
Agent Protocols
17

9.
Agent TCL
20

10.
TACOMA
21

11.
Telescript
22

references

[1]
Jonathan Dale. A Mobile Agent Architecture to Support Distributed Resource Information Management. Faculty of Engineering, Department of Electronics and Computer Science. University of Southampton. 1997

[2]
Keith D. Kotay and David Kotz. “Transportable agents.” Proceedings of the CIKM Workshop on Intelligent Information Agents, Third International Conference on Information and Knowledge Management, Gaithersburg, Maryland, December 1994.

[3]
“Mobile Agents White Paper.” General Magic Inc. 420 North Mary Avenue, Sunnyvale, CA 94086 USA, 1997-1998.

[4]
Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko. “Mobile agents: The next generation in distributed computing.” Proceedings of the Second Aizu International Symposium on Parallel Algorithms/Architectures Synthesis, Fukushima, Japan, March 1997. IEEE Computer Society Press.

[5]
Robert Gray, David Kotz, Saurab Nog, Daniela Rus, George Cybenko. “Mobile agents for mobile computing.” Technical Report PCS-TR96-285. Department of Computer Science, Dartmouth College, Hanover, NH 03755. May 2, 1996

[6]
Robert S. Gray. “Thesis – proposal, Transportable agents.” Technical Report PCS-TR95-261, Dept. of Computer Science, Dartmouth College, 1995.

[7]
Steven R. Farley. “Mobile Agent System Architecture.” SIGS Publications, Inc. New York, USA. 1997

INTERNET SITES

[8]
http://www.agent.org/

[9]
http://www.cs.umbc.edu/agents/

[10]
http://www.javaworld/jw-06-1998/jw-06-howto.html

[11]
http://www.mmrg.ecs.soton.ac.uk/publications/papers/Voyager/papers

[12]
http://www.cs.dartmouth.edu/~agents

[13]
http://www.cs.dartmouth.edu/reports/abstracts/TR95-261/

[14]
ftp://ftp.cs.dartmouth.edu/TR/TR96-285.ps.Z

[15]
ftp://ftp.cs.dartmouth.edu/pub/kotz/papers/

Network

Personal Communicator

Electronic Shopping Center

Flower Place

Ticket Place

Grocery Place

GO

PC

Server

Client

Server

Server

Client

Network

PC

Server

Network

Client Agent

Client Agent

Agent language part

C / C++ part

Communicating App

Script

Agent Generator

Agent Interpreter

Agent

Agent Development

Agent Execution

Figure 5. The Agent Language Part combines with a more conventional language to deliver Agent functionality to Communicating Applications

Figure 6. Development of an Agent

Places and Agents

Agent

System

Transport

Storage

External Applications

APIs

APIs

External Applications

Storage

� EMBED Word.Picture.8 ���

Agent

System

Places and Agents

Agent Encoding

Agent Transport

Figure 6. Agent System

Figure 7. Agent Protocols

� EMBED Word.Picture.8 ���

Figure 8. Agent TCL

Figure 9. TACOMA

Figure10. Telescript

1.

2.

3.

4.

5.

6.

7.

8.

1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

5.1

5.2

5.3

6.1

6.2

6.3

7.1

7.2

_969217543.doc
[image: image1.png]

_969223429.doc
[image: image1.png]

