The client server model

ABSTRACT

The PIPES interface creates a Virtual Machine environment using a heterogeneous network of workstations supported by an underlying layer of Distributed Component Object Model (DCOM).

The virtual machine is enabled through a client-server model. This setup is also delegated the task of monitoring the usage of machines that are part of the domain. The excellent performance gain through the use of independent threads ensures that the client nodes are not greatly loaded.

As an added advantage, our interface seeks to choose only those nodes that are best suited for the task on hand. For this, the system registry is accessed to gain information about performance parameters.

The Virtual Machine has been built for a Windows network. Its behaviour is similiar to a coarsely grained parallel computer where each node on the network performs an independent operation on its own data. The capability of distributing the tasks rests with the Application Server. This limits a further split of the task and the risk of inter-dependencies, loops penalties and other problems related to an unplanned parallel execution of tasks.

The interface offered by PIPES will allow you to create distributed or parallel programs with ease. The Visual tool packaged along with the interface libraries helps you to generate code that you can use in your existing application for less time consuming application development. PIPES comprises of only two dynamically linked libraries housing the callables that you can use in your programs. The functionality provided is both simple and well documented. Although the underlying method uses DCOM, no prior knowledge of DCOM is necessary to use PIPES. Additionally, example projects have been packaged together to give you a better idea of how this interface can be used.

Chapter

1

AIM OF THE PROJECT

We set out to implement a system where a number of computers can be treated as a single resource when linked together via a communication network. This allows a user to treat many distinct machines as though they were a single parallel computer, sometimes called a Virtual Machine or Cluster of Computers. Until recently using such a cluster was difficult. Programs required the use of numerous low level systems calls and specific data conversion routines. What we attempted to create was a programming environment or toolkit, which enable the user easily to write parallel programs that run across distributed computers.

We aimed to develop a number of codes that could run across a virtual machine, consisting of workstations on the network.

As an added advantage, our interface sought to choose only those nodes that were best suited for the task on hand. For this, we planned to interpret the system registry to gain information about performance issues such as processor, memory and file input-output information. An algorithm would then choose the best machines for a task based on initial cut-off values set by the user. Moreover the Virtual Machine was to behave like a coarsely grained parallel computer and each node on the network would perform a single independent operation on its own data. The capability of distributing the tasks was only present at the Application Server. This limits a further split of the task and the risk of inter-dependencies, loops penalties and other problems related to an unplanned parallel execution of tasks.

Chapter

2

ANALYSIS OF THE PROJECT & DESIGN

Internal Working of PIPES

PIPES architecture comprises of DCOM, Performance Data Interpretation and Sockets Communication. The application which uses PIPES has to create two independent threads ; one of which will call the function required to set the PIPES server running and the other will run and handle the environment for distributed and parallel computing.

PIPES provides the application programmer with four simple function exportables in two Dynamic Link Libraries, one : the. Server DLL and the other : the Client DLL. The server in PIPES creates a separate thread for every new client which requests a log on to the PIPES server. The further establishment of the connection and the communication with the client machine is done through this thread. The client in turn queries it’s own registry and picks up relevant performance parameter values and updates the server side with these values.

The application programmer can mention the number of clients desired for the application and also certain threshold values for the performance parameters of the clients. When a request to distribute a task is made to PIPES by the application the server refers to the updated performance parameter values and the threshold value set by the application for each of the parameters and selects the requested number of machines from amongst the active clients. The selection of the clients is done using a Best Node Algorithm .

Once the clients are selected the task is then distributed to the machines as per the requirement of the application.

PIPES Architecture

[image: image1.wmf]=

[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

´

2

4

1

1

2

u

ke

e

u

x

e

c

[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

´

2

4

1

1

2

u

ke

e

u

x

e

c

Project Requirements

The PIPES requires the following for proper execution

· NT Server as a PDC (Primary Domain Controller)

A Windows NT server machine needs to be the PDC so that the clients participating can be of the same domain.

· Workstation or 9x Clients

The Clients which participate in the combined task can have any of the Windows NT/95/98 operating systems running on them

· DCOM configured on all machines

DCOM should be well configured on al the machines so that the DCOM interfaces used within PIPES function properly.

· TCP/IP network

An underlying TCP/IP network is a must exist for the communication between the machines during the execution of the task.

Security Aspects

· On trying to terminate the client using the task manager in NT or the process controller in 95/98 a warning is raised by the OS itself that the process cannot be terminated. This is because the DCOM Component remains in memory and does not release the client till it’s job is done.

· PIPES prevents damage as far as the screen and the file access is concerned if an application tries to perform any malicious function.

· DCOM in PIPES has a timeout mechanism for any application that executes for an infinite amount of time.

Restrictions of PIPES

· When any of the logged on clients is switched OFF the results from that machine are incomplete but only for the job scheduled on that machine at that point of time.

· The maximum number of clients we have assumed that can logon at one time is 25.

· The working environment is restricted because of the DCOM security features.

· PIPES can be used for purely parallelizable applications only.

Chapter

3

Server Module

Server Information and Threading Models

The Distributed Environment
StartDCE() is the distributor function housed in the server DLL of the PIPES. This function takes a set of other functions from the user and distributes it to the client machines. There are many considerations to be taken into account before distribution can be done.

First, there should be a way for the user to know about the number of client machines that are currently available so that they can take some critical decisions. This is done by a sequence of checks that is done by the StartDCE(). The function first checks for at least one available client. If no client has yet connected it simply returns with error code NO_CLIENT_EXISTS. Second, the Best Node Selection Algorithm will be executed to determine how many clients are available. Hence if application needs to know the number of clients available, it calls StartDCE() with parameter of type DLLPARAMETERS as NULL. Third, the function checks whether sufficient numbers of clients are connected to start the operation ordered by the user. If less number of machines are connected then the function returns the error INSUFFICIENT_CLIENTS.

Now the function StartDCE() proceeds with creating one thread per function given by the user. Thus, the number of threads that are created is the number of functions given by the user. All the function can now be executed in parallel within their respective thread. After creating required number of threads StartDCE()proceeds with synchronisation of the threads created.

BestNode Selection Algorithm

This is the very important part of the Framework. This algorithm is needed to maintain the dynamic load balancing on the network. meaning that the clients are selected as victims not randomly but as per their performance at that instance of time. All clients are ordered as per their performance by this algorithm and StartDCE takes required number of clients from this list.

all client machine get their performance data of the operating system (Windows 95/98 or Windows NT Worksation/Server). these performance data is send to the server using TCP/IP interface at regular intervals

The algorithm analyses this performance data of all clients. Also this algorithm has some keys which will affect seletion of clients. These keys are expressed in the form of a structure called PARAMETERS which describes attributes of a single performance parameter of a machine this structure is as follows

struct PARAMETERS

{

double Weight;

int Ignored;

double Value;

double Factor;

};

Weight decides how much weightage should be given to the parameter
Ignored decides whether to consider the parameter at all or it should be ignored by the algorithm
Value The value of parameter
Factor the granularity of the parameter the actual value used by the algorithm is computed as follows

threshold = value * Factor

There are many such parameters. they all together decides certain thresholds for the best node selection. The thresholds are set by the application using the exportable SetServerState these thresholds are necessary so as to maintain the flexibility of the algorithm for all kinds of tasks such as memory intensive, computational intensive, I/O intensive etc.

The parameter which is sent by the client is compared by this threshold and a number is calculated as follows

number = weight *(parameter value - threshold)/threshold

All such numbers for all parameters are added together to get the weight of the node on the network. This part of the algorithm is as follows

After running the algorithm, we have the total weight of each client indicating how close that client matches with given threshold set. The best node is the one having maximum weight. next part of the algorithm is to sort all these weights. Make a list all client machine names as per their weights in the sorted list

 Synchronization Logic

StartDCE creates one thread per DLL exportable requested by the application. The function passes one DLLPARAMETER structure as a parameter to each thread so that each thread can proceed with execution of that DLL exportable. If due to some operating system error sufficient number of thread could not be created then the StartDCE() returns the error THREAD_COULD_NOT_BE_CREATED. This terminates all previously created threads and hence cancelling the whole operation. Once all threads are created and started the StartDCE() proceeds with synchronising the threads.

There are two synchronisation mechanisms supported.

Type 0: Waits for all Threads to finish. Thus in this type all requested DLL exports are executed in parallel. The application receives output from each DLL exports.

Type 1: Waits for first succesful thread to finish. Thus application receives output from only one function..

The function StartDCE() doesn’t continiously checks its child threads to find out their execution status. During two consective passes of checking it sleeps for some time delay. Once StartDCE() gets the desired result from the thread as per synchronising type requested, it simply terminates with SUCCESS thereby terminating unfinished threads automatically if any.

DCOM Client

The DCOM client is an application program that uses DCOM to create instances of DCOM components on a remote machine. After creating the remote object the DCOM client can use it like a local object. This machine and process transparency is provided by the DCOM itself. When DCOM client finishes using the remote object it releases the remote object so that on the destination machine it can be destroyed. In StartDCE() of PIPES, the threads created behaves as a DCOM client and uses the remote object to execute the required DLL export.

Once a thread is created by StartDCE() it start its execution. The thread receives a DLLPARAMETER structure from its parent. The contents of this structure is as follows

struct THREADPARAMETER

{

long lFinished;

char * MachineName;

DLLPARAMETER DllDetails;

};

After the thread receives all the above mentioned parameters it proceeds with execution. It initializes the DCOM library and creates an instance of the class CRemoteDLL on destination machine indicated by MachineName variable in the structure of type DLLPARAMETER. The thread then takes the pointer to IRemoteDLL interface by querying to Iunknown interface pointer.

The pointer to IRemoteDLL interface is used to execute the ExecDLL member of the IRemoteDLL interface. The ExecDLL takes the parameters which are needed to execute the DLL exportable on the destination client machine. Thus using DCOM the thread executes a function on the destination machine.

After finished using the IRemoteDLL and Iunknown interface pointers, they are released so that the instance of CRemoteDLL class on the destination machine can be destroyed. Finally the thread uninitialzes the DCOM library. The thread indicates its execution status to its parent by making lfinished 1, the shared variable in the THREADPARAMETER structure. The thread then terminates itself.

DCOM Component

The DCOM component is a piece of code in binary form encapsulating DCOM objects which can be plugged into other components with relatively less effort. The DCOM component defines a set of programming interfaces which are used to create, manipulate, and destroy DCOM objects. The DCOM component in PIPES encapsulates the CRemoteDLL class and their instances. It makes this object totally transparent along process and machine boundary. The component has one class called CRemoteDLL and two interfaces on top of this class. They are IUnknown and IRemoteDLL.. IUnknown interface is the default interfaee that should be present with each and every DCOM object. IRemoteDLL is an interface having one member function ExecDLL.

The DCOM component in PIPES is instantiated When DCOM client creates a object of CRemoteDLL class. The DCOM client is on the server machine and DCOM component is on client machine. Both communicate with each other using DCOM which is present on both machines.

The ExecDLL member function of IRemoteDLL interface within DCOM component receives information about DLL exportable from the DCOM client. This information is used to load and execute the required DLL exportable on the client machine.

Marshalling and Unmarshalling

Marshalling is the process of packing the parameter of a remote procedure into some predetmined representation and then copying it to the remote procedure’s address space. The piece of code, which carries out this job, is called Proxy in DCOM terminology.

Unmarshalling is the reverse of Marshalling i.e. unpacking the received data into parameters in a representation which remote procedure can access. The piece of code, which carries out this job, is called Stub in DCOM terminology. Proxy resides in the address space of DCOM client whereas Stub resides in the address space of DCOM component.

In PIPES the DCOM client and the component may be on different machines, which makes the DLL exportable truly a remote procedure. The DCOM client sends addresses of input, output buffers and their sizes. The input buffer from client’s address space is copied to the component’s address space and when the DLL exportable returns, the output buffer is copied back to the client’s address space.

Dynamic Link Library in PIPES

Dynamic Link Library (DLL) module in PIPES is used as a container for the functions of the application which can be distributed so that they can be executed in parallel.The DCOM component receives the information about the DLL exportable, such as its name, DLL name, input and output parameters. The DCOM component then loads the requested DLL into its private address space by making a system call. The DLL exportable is now called and its return values are returned back to the DCOM client.

The exportable written within the DLL has the restriction that it’s prototype should be as follows.

void FunctionName(long, char *, long, char *);

Chapter

4

FEW FEATURES OF TCP / IP
The TCP / IP standards do not specify the details of how application software interfaces with TCP / IP protocol software; they only suggest the required functionality, and allow system designers to choose the details.

The interface between TCP/IP and the applications that use it has been loosely specified. The advantages of doing so are the flexibility and the tolerance features. The disadvantage is that designers can make the interface details different for each operating system.

The interface must support the following conceptual operations:

Allocate local resources for communication

· Specify local and remote communication endpoints

· Initiate a connection (client side)

· Wait for an incoming connection (server side)

· Send or receive data

· Determine when data arrives

· Generate urgent data

· Handle incoming urgent data

· Terminate a connection gracefully

· Handle connection termination from the remote site

· Abort communication

· Handle error conditions or a connection abort

· Release local resources when communication finished

Chapter

5

USE OF SOCKETS IN PIPES

Introduction

When a designer considers how to add functions to an OS that provides application programs access to TCP/IP protocol software, they must choose either of the following two approaches

· Define functions specifically to support TCP/IP communication

· Define functions that support network communication in general and use parameters to make TCP/IP communication a special case

The Socket Abstraction and Data structures used for Sockets

The socket interface provides a new abstraction for network communication, the SOCKET. Each active socket is identified by a small integer called its Socket Descriptor.

When the application makes a call to socket() command, the OS allocates a new data structures to hold information like the protocol family, type of service, local / remote IP, local / remote port number. All these fields are not filled during creation. The data structures used are sockaddr and sockaddr_in.

Using Sockets

A socket after being created can be used to wait for an incoming connection (passive socket) or to initiate a connection (active socket). A socket used by a server is always passive while that used by a client is active. The protocol port number or the IP addresses of either the local or remote machine needs to be specified by the application. TCP/IP protocol defines a communication endpoint to consist of an IP address and a protocol port. A protocol family can use one or more address family to define address representations. The generalized format which all endpoint addresses use is (address family, endpoint address in that family).

Summary of the Socket Calls for TCP
Function Name
Meaning

Socket
Create a descriptor for use in network communication

Connect
Connect to a remote peer(client)

Write
Send outgoing data across a connection

Read
Acquire incoming data from a connection

Close
Terminate communication and deallocate a descriptor

Bind
Bind a local IP address and protocol port to a socket

Listen
Place the socket in passive mode and set the number of incoming TCP connections the system will enqueue (server)

Accept
Accept the next incoming connection (server)

Recv
Receive the next incoming datagram (server)

Recvfrom
Receive the next incoming datagram and record its source endpoint address

Send
Send an outgoing datagram

Sendto
Send an outgoing datagram, usually to a prerecorded endpoint address

Shutdown
Terminate a TCP connection in one or both directions

Getpeername
After a connection arrives, obtain the remote machine’s endpoint address from a socket

Getsocketopt
Obtain the current options for a socket

Setsocketopt
Change the current options for a socket

Setting Up the Client and Server Sockets

Most Windows Sockets applications are asymmetrical; that is, there are generally two components to the network application—a client and a server. These components are can be isolated into separate programs or integrated into a single application. Both the client and the server components go through different procedures to ready themselves for networking by making a number of Windows Sockets API calls. They are illustrated below

CLIENT SIDE
SERVER SIDE

Socket
Socket

[image: image4.wmf]=

Connect
Bind

Write
Listen

Read
Accept

Close
Read

Write

Close

Server Using PIPES

The server in PIPES uses following function calls to communicate with the client

1. void SetUpServerForTCP(void) - This function attempts to start the server using the TCP protocol. The server tries to use port 3030 for this purpose. The Server also creates threads to analyze the most recent performance data from each client. It maintains the necessary buffers and to communicate with a Client (independent thread for each client). SetUpServerForTCP makes calls to

· SocketsCheckVersion - this function starts up use of WinSock, and does a version check to ensure that the required version of WINSOCK.DLL is available.

· SocketBecomeServerTCP - This function creates a TCP USocket, binds to the specified port and address INADDR_ANY, and places it in passive mode, ready to accept connection requests.

· SocketAccept - This function waits to accept connectionrequests over the socket, and returns a new USocket where the new connection has been established.

2. DWORD HandleClient(LPDWORD lpdwParam) - This thread is created for every client that connects to the server. It is responsible for reading the performance key values from the client machine and sending them across to the server. Additionally, the machine name, OS version and thread id are sent to the server. If the client dies or logs off, the thread cleans up the client buffer space. For this it uses a critical section. HandleClient makes calls to

· SocketSend - This function sends as much of the data as possible over the socket

· SocketRecv - reads as much data as is currently available at the socket
· SocketShutdown - This function shuts down communication in both directions over the Usocket
· SocketClose - This function closes the USocket and frees it. No operations are possible on the closed Usocket
Client Using PIPES

The client using PIPES makes following function calls to set up a connection with the server

1. int SetUpClientForTCP(LPTSTR ServerName) - This function checks the Winsock.dll version, gets computer name and OS version information. SetUpClientForTCP makes calls to

· SocketsCheckVersion - this function starts up use of WinSock, and does a version check to ensure that the required version of WINSOCK.DLL is available.

This function also gets the OS running on the machine and the name of the machine

2. int StartClient(LPTSTR ServerName, LPTSTR MachineName, OSVERSIONINFO *pOsVersionInfo) - This function picks up the thread ID from the server, gets the latest performance parameters from the client appends the thread ID to the list of these parameters, and sends updated values to the server. It does this continuously.
· SocketConnectToServerTCP - This function creates a TCP socket and connects to the specified server at the given protocol port. The newly created socket is bound to port 0 and address INADDR_ANY.

· SocketRecv - reads as much data as is currently available at the socket
· SocketSend - This function sends as much of the data as possible over the socket
· SocketShutdown - This function shuts down communication in both directions over the Usocket
· SocketClose - This function closes the USocket and frees it. No operations are possible on the closed Usocket

Chapter

6

DCOM

Introduction

As the case with most Microsoft technologies, DCOM was not invented overnight by a caffeine-crazed developer. Instead, DCOM is the coalescence of two separate paths of technological evolution, COM and Disributed Computing.

After introducing Windows 3.1, Microsoft realized that users wanted to exchange data among various applications. The clipboard and Dynamic Data Exchange (DDE) initiatives were two of the first interprocess communication facilities incorporated into Windows. OLE was first introduced with windows 3.1 in 1992. The idea of OLE 1 was to provide an improved mechnism for dealing with compound documents. The linking and embedding capabilities of OLE were further refined with the release of OLE 2. Over the years, OLE has faded into the background while COM has taken center stage. And with the release of Windows NT 4.0 COM gained the functionality to necessary to invoke components that were running on remote computers connected via a network. This was the first release of DCOM.

The members of the Open Software Foundationn addressed the issue of distributed computing. Their specifications for the Distributed Computing Environment (DCE) provided comprehensive and integrated set of tools and services to support creation of distributed applications, in a manner analogous to the support offered by the operating system in a centralized environment. One outcome of the Open Software Foundation (OSF) Disributed Computing Environment (DCE) was a specification for communicating between computers. This specification, known as Remote Procedure Calls (RPC), allows applications on different computers to communicate. DCOM uses RPCs for its intercomputer communication and thus indicates how DCOM evolved from RPC.

Characteristics of COM

COM has following three defined characteristics

1. COM is a specification. COM is a document that can be printed or read. COM is not only a specification, it also consists of some system code implemented by Microsoft.
2. COM is a philosophy of modern software development. The COM specifications describes in which applications are built from components. Developers create compact, well defined components that work together. These components can then be reused in many environments on both the client and the server.

3. COM is a binary standard for building software components. COM is the name of the specification for Microsoft’s basic object technology that defines what it means to be a COM object and how a COM object is called. COM’s role is that of the “glue” between components, enabling unrelated softeare objects to connect and interact in meaningful ways.

COM Components and Interfaces

The COM specification proposes a system in which application developers create reusable software components. The breakdown of a project into its logical components is the essence of the object oriented analysis and design. A component is a reusable piece of software in binary form that can be plugged into other components from other vendors with relatively little effort. These reusable software components present their functionality through a defined set of interfaces- the programmatic kind of interfaces that enable one piece of software to talk to another. An interface is actually a defined set of functions that are grouped together under one name.

The COM component can simultaneously support many interfaces with different functionalities and different versions. Once an interface is released it should never change. If the designer wants to provide new functioalities it should define a new interface, so that new application can take advantages of new interfaces and old applications can still use prvious interfaces.

Every COM object must support at least one interface: IUnknown. When a client initially gains access to an object (client can create COM objects using system calls like CoCreateInstance() or CoCreateInstanceEx()), that client will receive at minimum an IUnknown interface pointer through which it can control the lifetime of the object and invoke QueryInterface(). QueryInterface()is the basic function in COM through which client determines what other interfaces are supported by a component.

Life time Of a COM object

The COM objects is created by making a system calls, CoCreateInstance() or CoCreateInstanceEx(). After that client can start using the object’s functionalities through the interfaces it provides. Once the client is over with the COM object, it releases all the interfaces attatched to that object. Internally all COM objects keep a count of the number of interfaces queried. Once an interface is queried, the internal count is incremented and it is decremented when an interface is released. The moment this internal count becomes zero the COM object is destroyed.

Types of DCOM components

DCOM components can be of any of the following types.

1. In-Process: In process servers are loaded into client’s process space because they are implemented as DLLs. The main advantage of the in process servers is their speed. Since objects are loaded in process, no context switching is necessary to acces their services. The only disadvantage is they can not run as a stand alone applcation.
[image: image5.png]Instance courter data 1

osance deiiion |
(PERFNSTARCE BEFNTI

PERF_DRIECTTY,
ertardem

PERF_OBIECTTY,

eurtargem

Conter deitions
(PERF-COUNTER BEFNT!

2. Local: A local server runs in a separate process on the same machine as client. This type server is an EXE of its own, thus qualifying as a separate process. Local servers are significantly slower to access than in process servers because of switching overhead.
[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

-

´

2

4

1

1

2

u

ke

e

u

x

e

c

3. Remote: Remote servers runs on a separate machine connected via a network. Remote servers therefore always run in another process. The beauty of DCOM is that it does not require any special programming to enable this functionality.

[image: image7.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

´

2

4

1

1

2

u

ke

e

u

x

e

c

DCOM Library

DCOM is not just a paper specification, but also involves some system level code- that is some implementations of its own. The DCOM implementations are contained in the DCOM library. This implementation is provided through a DLL that includes a small number of API functions that are used by both server and client.Before DCOM library can be used it should be initialized (CoInitialize()) and after its use is over , it should be freed (CoUninitialize()).

GUID and Security in DCOM

The Windows registry is a central database, used to store all kinds of information like hardware and software settings, user profiles etc. DCOM uses windows registry to locate its components on the system, to check whether the client has access to the requested components and versioning information for components. For all this information DCOM defines a Globally Unique Identifier (GUID), which is assigned to the class of the DCOM object, to all the interfaces supported by that object and to the application EXE encapsulating that DCOM object.

DCOM has following goals of its security model.

1. Activation control specifies who is permitted to launch components.
2. Access control is used to control access to the component’s objects.
3. Authentication control is used to ensure that a network transmission is authentic and to protect the data from unauthorized viewers.
4. Identity Control specifies the security credentials under which the components will execute.
Security information for COM based components is configured in two ways: declarative security and programmatic security. Declarative security setting are configured in the registry external to the components. Programmatic security is incorporated into the components by the developer. In PIPES there is no programmatic security implemented.

The security information is divided into two arenas: default security and component security. Default security specifies security for all components running on the local machine that do not in some way override these default security. Components security can be used to provide special security for a specific component, thereby overriding default security.

Marshalling and Unmarshalling

The method of passing parameters in DCOM called Marshalling, is very important in DCOM. Marshalling is the process of packaging method calls and their parameters into a packet and then sending that packet to a component. For example, marshalling an integer parameter involves simply copying its value into a transmission buffer and sending it across. Marshalling an pointer, is copying the whole buffer pointed to by the pointer to the transmission buffer and sending it off. There are three ways to implement marshalling: standard marshalling, type library marshalling and custom marshalling. In PIPES standard marshalling is chosen.

[image: image8.bmp]
The Distributor Function

The third and most important exportable from the Server DLL is StartDCE(). This exportable starts the parallel execution of the function that is given to it on the machines which it selects based on their merit of performance. Its prototype is as follows:

 __declspec(dllexport) long _stdcall StartDCE (

 DLLPARAMETER DllParameters [],

 int nSyncType,

 int nNumberOfMachines
);

You can export functions or class member functions from a DLL by using the __declspec(dllexport) keyword. If you use this prefix, you do not need a .DEF file for exports.

Parameters

DllParameters

This is an array of DLLPARAMETER with at least nNumberOfMachines elements. If this parameter is specified as NULL then StartDCE() returns the number of clients currently logged on to the server.

nSyncType

Selects the type of synchronization needed. There are two types supported:

0
The distributor waits till all the processes on all the client machines finish.

1
The distributor waits for the first client machine that completes its processes successfully.

nNumberOfMachines

This specifies the minimum number of machines that the application has requested for the execution of the job given. In turn, this specifies the number of elements passed in DLLPARAMETER structure.

Return Codes

NO_CLIENT_EXISTS
StartDCE() could not begin because there are no clients logged on. The StartDCE can be called again after sufficient number of client machines log on.

INSUFFICIENT_CLIENTS
StartDCE()could not succeed because the number of machines requested was more than the number of client machines logged on. The StartDCE can be called again after sufficient number of client machines logs on.

THREAD_COULD_NOT_BE_CREATED
StartDCE()creates a number of threads and each thread activates one function on a client machine. If StartDCE()could not create the required number of threads then this error occurs. It is recommended not to execute StartDCE()again unless the exact cause has been detected by the application.

SUCCESS
StartDCE()succeeded as far as the execution of the required functions were concerned. For the status of the individual functions, their HRESULT return values within DLLPARAMETER structure will need to be examined.

The DLLPARAMETER structure

struct DLLPARAMETER

{

char * szDllName;

char * szFuncName;

long lSizeOfInBuffer;

char * pbInBuffer;

long lSizeOfOutBuffer;

char * pbOutBuffer;

HRESULT hr;

};

szDllName
Specifies the DLL name in which the exportable functions can be found. The framework simply sends this string to the operating system of the selected client machine. Hence, the path should be specified as per system conventions.

szFuncName

Specifies the name of the function within the DLL szDllName. The function should be a valid exportable of the specified DLL with calling conventions compatible to Microsoft C/C++ default convention.

lSizeOfInBuffer

Size of the buffer that will be copied from the source machine and sent to the function on the destination machine.

pbInBuffer

The address of the input buffer. This buffer is copied from the application's memory area into the memory area of the function on the destination machine.

lSizeOfOutBuffer

Size of the output buffer that will be copied from the function on the client machine to the application’s memory area as return values.

pbOutBuffer

The address within the application's memory area where the output buffer from the function on the client machine will be copied.

hr

The HRESULT value indicating the status of the function execution.

The THREADPARAMETER structure

struct THREADPARAMETER

{

long lFinished;

char * MachineName;

DLLPARAMETER DllDetails;

};

lFinished

This variable informs the parent of the thread about its finish status. This value is initially 0.When the thread finishes its job then just before it terminates it sets this value to 1. Its parent also shares this variable.

MachineName

This is a string containing the name of the destination client machine on which the requested DLL export is to be executed.

DllDetails

This is a DLLPARAMTER structure containing all the details of the DLL export such as dllname, exportable name, input and output parameters and a variable of HRESULT type as a place holder to indicate the execution status of the DLL export.

Chapter

7

Performance Data Interpretation Module

Explanation of the Performance Data Grabbing and its Interpretation

Why is it necessary ?

Many distributed systems available in the market do not offer the advantage that the tasks requesting distribution would be scheduled on the best machine(s) available on the cluster. While many of these systems might not need such an elaborate scheduling method, such as MPI (Message Passing Interface), in a heterogeneous environment, for which PIPES has been designed, such a kind of a scheduling system is essential. In fact, if this dynamic load scheduling system, as we will call it, is not implemented for the heterogeneous cluster of nodes, there is no guarantee that the system will run efficiently while distributing tasks. By incorporating this module into the design of PIPES, we have enhanced the performance of PIPES as a parallel execution system and also generalized the virtual machine to run efficiently over almost any type of Windows based networks, and probably later even on the Internet.

To summarize this point, the existence of the dynamic load scheduling module will enable any user to become part of the Virtual Machine domain. Once part of the domain, the scheduling that runs on the Application Server will be able to select the best machine(s) for the task from the current pool of active clients. Better machines therefore will be given more preference than other machines.

How is Dynamic Load Scheduling Done

In order to perform dynamic load scheduling over the virtual machine, it is extremely important to be able to determine the best machine for a particular task requesting distribution. The only way to be able to do this is by weighing each client node on the basis of its available memory, CPU free time, number of threads, amount of file access, etc. These parameters are the performance data of the system. Windows (NT/9x) maintains the performance data inside the registry. For more information on the Windows registry we recommend that you read Appendix C.

As one would expect, these values are extremely dynamic and change regularly. The virtual machine should therefore only make decisions about the best clients for the task by using the most recent performance data values.

Windows 9x Performance Data Interpretation Module

Accessing the Windows 9x performance information is quite trivial. We wrote a class CPerfDataGrabber95 to encapsulate the process of grabbing and interpreting the performance data from the system registry key HKEY_DYN_DATA. The class method CPerfDataGrabber95::GetPerfData gets the key values corresponding to the keys in a global string (explained later) stores into a DWORD buffer. Internally the method uses RegQueryValueEx. The class method CPerfDataGrabber95::Format is actually responsible for the interpretation of these values. It uses a DWORD buffer of previous values to compute the correct current values of the performance keys.

The calculation of the current values is done as follows:

Time Bound Values

Find the difference of the current value with the previous value of the key and scale it up 32 times.

Remaining Values

Current value is as it has been obtained from the registry, no change is required.

The Performance Keys Considered

The performance keys considered cover Memory, CPU Time, Threads, Paging and File Access. The key names are stored in a global string as follows:

char szListOfPerfKeys[][KEY_NAME_LEN] =

{

"VFAT\\BReadsSec",

"VFAT\\BWritesSec",

"VFAT\\ReadsSec",

"VFAT\\WritesSec",

"VMM\\cPageOuts",

"VMM\\cPageIns",

"VMM\\cPageFaults",

"KERNEL\\CPUUsage",

"VMM\\cpgFree",

"KERNEL\\Threads"

};

Windows NT Performance Data Interpretation Module

The Title Database

Before diving into the specifics of the performance data, it is important to understand how the performance information gives titles (or names) to the various components of the performance data. The titles of the performance data components are kept separate from the data itself. Since the naming mechanism can be described independently of the actual performance data, we will describe how performance titles are managed. The Appendix C will connect this topic to the actual performance data.

The Windows NT performance information accessible via the performance data is arbitrarily extendable. Therefore, the names of objects and counters are maintained in a block of data that is also read in via the registry. The important thing to remember is that these titles are dynamic. They could theoretically change from boot to boot or machine to machine.

All of the object and counter name strings are collected together in one place for easy access. They are kept in what we will call a title database for lack of a better term. You read the title database in one big chunk from the registry. A title database consists of a series of null-terminated strings, one after the other in memory. To make things more interesting, only half the strings in the title database are actually an object or counter title. The remaining strings are string representations of decimal numbers; for instance, the string "126." These number strings are each paired up with an actual name string. For instance, in one machine's title database, we have the following sequence of strings:

"86", "Cache"

"88", "Data Maps/sec"

"90", "Sync Data Maps/sec"

As you navigate through the performance data, you will come across data structures that describe a type of object (such as the cache) or a counter (such as "Data Maps/sec"). In these data structures, the title of an object or counter is stored as a binary value corresponding to a string number in the title database. Beware, though. Not every index value has a string associated with it. In fact, in the latter part of the title database, you will come across large gaps in the indexes of consecutive title strings.

To make the title database easy to use, we wrote the CPerfTitleDatabase class. The two most important member functions of this class are GetTitleStringFromIndex and GetIndexFromTitleString. The GetTitleStringFromIndex method simply returns whatever value is in the specified slot in the string array, while GetIndexFromTitleString performs a linear search of the string array, comparing the input string to each nonzero string pointer in the array.

The most interesting method in the CPerfTitleDatabase class is its constructor. There you will find the code that reads in the raw title strings from the registry and builds the array of string pointers. The code begins by determining how many elements the array of title string pointers needs. The code does this by reading the "Last Counter" value from the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\PerfLib key in the registry. The value returned is not the actual number of title strings, however. Rather, it is the maximum index value that a given title string can have. Using this value, the constructor allocates enough memory for the array of string pointers.

After allocating the string pointer array, the constructor reads in the raw title strings as one giant blob. The function reads the title strings from the "Counter 009" value of the HKEY_PERFORMANCE_DATA key. According to the documentation, the "009" portion of the string indicates the English language. It is not clear from the documentation what you would use in place of "009" for non-English versions of Windows NT.

After reading in the title string data, the code processes the strings in pairs, first the array index string, then the title string. For each title string that's encountered, the appropriate slot in the string pointer array is set to point at the title string in the raw data.

To convert the array index string into its binary representation, we used the _ttoi function. What's _ttoi? It's essentially the atoi (ASCII to Integer) function, but it can be used when compiling for either ANSI or Unicode. We implemented this class using code that's ANSI/Unicode compatible. That's why you'll see a lot of TEXT macros and potentially unfamiliar RTL functions sprinkled throughout the class code.

The maximum number of possible entries in the description title database is found by reading the "Last Help" value from the same key where "Last Counter" is located. The raw help description strings are obtained by reading the "Explain 009" value of the HKEY_PERFORMANCE_DATA key. Since the counter and help title databases are so similar, we made the CPerfTitleDatabase class work with both. The CPerfTitleDatabase constructor takes an enum parameter that indicates whether the counter or help titles should be used.

Performance Snapshots

The parsing of the Windows NT performance data is not trivial, and is the main reason we wrote C++ classes to encapsulate the work. To take a performance snapshot, you read yet another value from the HKEY_PERFORMANCE_DATA key in the registry. What is unique about taking a snapshot is that the value parameter passed to RegQueryValueEx is not a predefined string. Instead, you pass RegQueryValueEx a value name that is composed of zero or more tokens. Based on the value name that you pass, RegQueryValueEx creates an appropriate snapshot containing the requested data. Taking a performance snapshot is somewhat like ordering from a menu. You can say, "I'd like a thread list and a list of logical disks. That's all, thanks." Interestingly, when you order certain dishes, you may automatically get side orders. For example, when you request thread information, the snapshot data also contains a process list. That is because a thread cannot be completely described without mentioning the process that owns it. Likewise, a complete logical disk description requires information about the physical disk that the logical disk resides on. It is up to the code that parses the snapshot data to realize that the snapshot may contain more data than was actually requested.

Assuming you only want selected parts of the total available performance information, you first create a string with one or more tokens representing which information you would like. The tokens are separated by spaces, and each token is a string representation of a counter index. For example, on one system, the process list object corresponds to counter index 230, and the logical disk list has counter index 236. To collect information on just those two items, One would read the HKEY_PERFORMANCE_DATA key, and pass "230 236" as the value name parameter.

If you would like to sample nearly everything on the performance menu, you can pass the string "Global" to RegQueryValueEx. The returned snapshot will contain all the performance data that is not expensive (timewise) to collect. On one system, passing "Global" returns information about these items:

system

processor (list)

memory

cache

physicalDisk (list)

logicalDisk (list)

process (list)

thread (list)

objects

redirector

server

paging file

browser

Another predefined string value that can be passed to RegQueryValueEx is "Costly." The Costly performance data contains information that takes the system a relatively long time to acquire. On one system, reading the Costly data takes 4 or 5 seconds, even with just a few programs running. The Costly information on one system is the following:

process address space (list)

image (list)

thread details (list)

Yet another predefined string value that can be used when reading performance data is "Foreign <computer name>." This causes the registry to take a performance snapshot of a remote machine over a network.

One messy part of taking a performance snapshot is that you do not know ahead of time how big a buffer you will need for the data. Normally if you don't know how big a buffer you'll need when reading data from the registry, you can call RegQueryValueEx, and tell it that the buffer size is zero bytes. The registry can then indicate to you how big the buffer needs to be—you can allocate a buffer of the correct size and try again. The problem is that when reading performance data, the required buffer size for a snapshot can vary from invocation to invocation of RegQueryValueEx. The result is that you might ask the registry how big a buffer you need. After allocating a buffer of that size, you could query the registry again and still have the call fail because the buffer was too small. One way to handle this problem is pass in a very large buffer and hope for the best. A better approach is to ask for the performance data in a loop. If RegQueryValueEx returns ERROR_MORE_DATA, allocate a bigger buffer and go through the loop again. This is what the Microsoft sample code does, and this is what our C++ class code does, as you will see shortly.

After you successfully take a performance snapshot, what exactly do you have? Take a look in the WINPERF.H header file that comes with your compiler, and you'll find several structure definitions. What's of interest right now is the PERF_DATA_BLOCK structure. All snapshots begin with this structure. Immediately following PERF_DATA_BLOCK is the data for the object types that you requested.

While there are over a dozen fields in the PERF_DATA_BLOCK structure, the most important fields tell you how many object types follow the PERF_DATA_BLOCK (for example, "System"), and where the first object description can be found in the snapshot data. Additional information in the PERF_DATA_BLOCK includes the name of the system that the snapshot was taken for (as a Unicode string), and various timing related fields. The WINPERF.H file describes each field, so we won't waste space with a description here.

The Rest of the Class Design
To encapsulate the complexities of taking and managing snapshot data, we wrote the CPerfSnapshot class. The constructor for CPerfSnapshot takes a CTitleDatabase pointer as an argument and stores it in a private data member for later use. A snapshot is not actually taken in the constructor code. The destructor for the CPerfSnapshot class just deletes any memory allocated by previously taken snapshot.

The most important member function for the CPerfSnapshot class is TakeSnapshot. This function takes one parameter, a string indicating what sort of data you'd like in the snapshot. To make the class easier to use, the function does any necessary conversions on the string prior to passing it as the value parameter to RegQueryValueEx. For instance, instead of passing "230," you can pass "Process." The private member function ConvertSnapshotItemName handles the messy work of looking up the counter titles and creating the final string.

After TakeSnapshot has a string that is suitable to pass to RegQueryValueEx, the code enters into a while loop. The first time through the loop, the input buffer size is 0, so RegQueryValueEx fails with a code of ERROR_MORE_DATA. However, in doing so, the function fills in the cbPerfInfo variable with the required buffer size for the snapshot. The code then adds 4KB to this size, allocates a memory block of that size, and then loops back to the RegQueryValueEx call.

The second time through the loop, the buffer should be big enough, and RegQueryValueEx should return ERROR_SUCCESS. If this happens, the TakeSnapshot code checks for the "PERF" signature that is at the start of a valid PERF_DATA_BLOCK structure, and returns TRUE if everything's OK. If the second call to RegQueryValueEx fails, the code bumps up the buffer size by another 4KB and loops again. The loop continues in the same way until RegQueryValueEx returns either a success code or some other error code besides ERROR_MORE_DATA.

The GetNumObjectTypes and GetSystemName member functions of the CPerfSnapshot class are relatively self-explanatory. They both retrieve the desired data out of the PERF_DATA_BLOCK structure. One slight twist to the GetSystemName method is that it has code to convert the Unicode system name string to ANSI if you are compiling in ANSI mode. The last member function of the CPerfSnapshot class to describe is GetPostHeaderPointer. This function returns a pointer to the first byte of the snapshot buffer following the PERF_DATA_BLOCK structure.

The classes we wrote encapsulate the complexity of all the variable-length structures corresponding closely to the structures in WINPERF.H. Each class includes enumeration and lookup methods that return pointers to class instances, of the type logically below it in the hierarchy. For example, the performance object class has methods that return pointers to object instance classes. The one exception is that the performance object class does not have a lookup method. This is because there could be multiple performance object instances with the same name, and the lookup method would not know which instance to return.

As you look up or enumerate the lower-level classes, you will get back pointers to instances of the lower-level classes. It is your responsibility to delete them when you are done. This model is different from typical find first/next functions where you supply a structure that is filled with information. The model these classes use is more like OLE: when you create an OLE object, you get back an interface pointer, and the interface has a reference count of 1. You need to call IUnknown::Release explicitly to free the object. Deleting the object pointers in these classes is similar to calling IUnknown::Release in OLE.

Working our way from the top down in the hierarchy, the first class we come to is CPerfObjectList, located in OBJLIST.CPP and OBJLIST.H. CPerfObjectList provides access to the various performance objects embedded in the performance snapshot. The CPerfObjectList constructor expects a pointer to a CPerfSnapshot class, as well as a pointer to a CPerfTitleDatabase class. The title database is needed to look up a particular performance object (such as "thread") by name. The CPerfObject class is the only class that you create explicitly, and thus is the only class for which you need to know the constructor parameters.

The GetFirstPerfObject and GetNextPerfObject methods of the CPerfObjectList class allow easy enumeration of all performance objects in a snapshot. They both return a pointer to an object CPerfObject. Alternatively, if you know exactly which kind of performance object you're after, you can use PerfObjectList::GetPerfObject(name), which also returns a CPerfObject pointer. Regardless of which you use, the function locates the appropriate PERF_OBJECT_TYPE (a WINPERF.H structure) within the snapshot data and uses it to create a CPerfObject.

The CPerfObject (PERFOBJ.H and PERFOBJ.CPP) has the GetFirstObjectInstance and GetNextObjectInstance methods for enumerating the object instances within a performance object. For each instance, the methods return a pointer to a CPerfObjectInstance. If the object does not have instances, the GetFirstObjectInstance method fakes a single instance.

As you might guess, CPerfObject::GetObjectInstanceCount returns the number of object instances the object contains (for example, how many threads are in the thread object). If the object does not have instances, the method returns -1 (see PERF_NO_INSTANCES in WINPERF.H). The CPerfObject::GetObjectTypeName method returns the name of the object ("Process", "Thread", and so on). This method uses the title database to convert the object's title index into a readable string.

As the CPerfObject methods enumerate the instances, they return pointers to CPerfObjectInstance objects. (The CPerfObjectInstance code is in OBJINST.H and OBJINST.CPP). Since each object instance has a name, the class includes the GetObjectInstanceName method for retrieving this data. If you were enumerating the process list, you could use this method to find the name of each process.

CPerfObjectInstance::GetFirstCounter and GetNextCounter return pointers to CPerfCounters. If you know the name of the desired counter, use GetCounterByName instead; this method takes a readable name (such as "Working Set") so you do not have to pass the counter's index value (such as "180").

Finally, we come to the lowest level in the hierarchy: CPerfCounter (PERFCNTR.H and PERFCNTR.CPP). This class represents one unit of information about one particular performance object instance. GetName returns the counter's name, which originally started out as a string in the title database. GetType returns the DWORD value that describes the size of the counter and how it should be interpreted. WINPERF.H defines all the gory bitfield encoding for this DWORD. CPerfCounter::GetData retrieves the raw data associated with the counter. It also returns the counter's type DWORD. The final method, CPerfCounter::Format, hides all the counter format variations. Simply pass it a buffer pointer, and Format fills it with a string that represents the value. Format does something reasonable with all the various counter types we encountered, but does not support every known type in WINPERF.H. The third argument to Format is a default argument that specifies whether Format should display the number as decimal or hex. The default is decimal.

Finally, the class CPerfCounterDerived, is derived from the base class CPerfCounter. It redefines the member function Format and adds the function GetVal. The newly defined Format function is what we have used in our code. It follows the earlier method on formatting performance counter values and recognizes 3 types of keys. However, it is interested only in the PERCENT and the PER_SEC values. The formatted value of the performance data is returned, or if an unnecessary counter is found it returns EMPTY. The method takes the last value of the performance data counter being considered to interpret the current value. The current value is calculated as follows:

Percentage values

Difference between current value and last value divided by 10 to the power 5.

Per second values

Difference between current value and last value.

The Performance Keys Considered

The performance keys considered cover Memory, CPU Time, Threads, Paging and File Access. The Object names and their respective counter names are stored in a structure format as follows:

st_PerfObjectStruct stPerfObjectStruct[] =

{

{"System", "File Read Bytes/sec"},

{"System", "File Write Bytes/sec"},

{"System", "File Read Operations/sec"},

{"System", "File Write Operations/sec"},

{"Memory", "Pages output/sec"},

{"Memory", "Pages input/sec"},

{"Memory", "Page faults/sec"},

{"Processor", "% Processor Time"},

{"Memory", "Available bytes"},

{"Objects", "Threads"}

};

Chapter

8

Application : BITMAP

This section describes in brief how the application working with Bitmaps has been designed and how it uses PIPES.Bitmaps are blocks of pixel data that can be output directly to a device, such as a video display. They store pixel data directly from the screen into a memory buffer.

Types of Bitmaps

There are two types of formats used to store the Bitmap data. They are

1) DDB – Device Dependent Bitmaps

This is a very simple format used to store the data in a bitmap. This format is used to store data for a monochrome image. One bit is used to store color information on each pixel (value of bit for black color is 0 and that for white color is 1)

2) DIB – Device Independent Bitmaps

This format stores additional information about the colors used by the bitmap. For this purpose a color table is created and the color information is stored in this table in the form of data structures called RGBQUAD.

The DIB consists of three sections namely

1. BITMAPINFOHEADER – This structure contains information about the dimensions and color format of a device-independent bitmap (DIB). It has the following structure

typedef struct tagBITMAPINFOHEADER{

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER;

2. Color Table of RGBQUAD structures The RGBQUAD structure describes a color consisting of relative intensities of red, green, and blue as shown below

typedef struct tagRGBQUAD {

 BYTE rgbBlue;

 BYTE rgbGreen;

 BYTE rgbRed;

 BYTE rgbReserved;

} RGBQUAD;

3. The pixel data which is in the form of either indexes into the color table or the RGBQUAD structures themselves is stored according to the type of the Bitmap.

Working with a Bitmap

 The bitmap is to be included as a resource into the program that will be loading it into memory. After loading the bitmap resource into memory, all the required attributes of the Bitmap are stored in suitable standard data structures provided to the programmer. These attributes include the width, the height etc. of the Bitmap. The pixel data stored can be used as indexes into the color table to be able to carry out the desirable modifications on the Bitmap like changing the color of the Bitmap, changing a color Bitmap to a monochrome bitmap, etc..

Distribution of the Application

The Application considers the Bitmap to be divided into strips. The decision of the number of machines is taken by making a call to the exportable StartDCE provided by PIPES with a parameter. This call to StartDCE sets up the connection between the client and the server for further communication. Then the various parameters required for StartDCE are assigned appropriate values and the entire task is distributed to the clients selected by PIPES as illustrated below.

[image: image9.png]Instance courter data 1

osance deiiion |
(PERFNSTARCE BEFNTI

PERF_DRIECTTY,
ertardem

PERF_OBIECTTY,

eurtargem

Conter deitions
(PERF-COUNTER BEFNT!

Chapter

9

Application : FRACTALS

This section describes in brief how the application working with Fractals has been designed and how it makes use of PIPES to increase performance. Fractals are images generated by some recursive calculations. In this application we have chosen to draw 10 simple Fractal trees.

How to draw a Fractal Tree

In order to draw a simple fractal tree, follow the steps given below:

1. Draw a vertical line of sufficient length.

2. Find a point on the line that is one-third the distance from the end of the line.

3. Make that point the new end-point of the line. Leave the original line as it is.

4. Rotate this new length of the line by ‘x’ degrees to the right around the new end-point.

5. Rotate the same line by ‘x’ degrees to the left around the new end-point.

6. Repeat steps 2. To 6. for all the 3 lines obtained by recursively calls until a limit.

7. When the limit is reached, draw a leaf at the end of the branch of the fractal tree.

8. Return to parent function.

Figure of Leaf :

Changes required for Parallelization

Normally, the display of the fractal tree would involve a recursive procedure calculating the coordinates of the pixels that have to be displayed on the screen for each tree. This process would be repeated for all the trees of the picture. However, for a parallel execution of this program, this recursive procedure that is executing on some remote machine would have to store these coordinates that have been calculated in some buffer which is then passed back to the Application Server. The calculated pixel coordinates make no sense at all to the recursive procedure that is executing on a remote machine. It is up to the Application Server to interpret these values and display points or lines using these pixel values. Thus the only change in the algorithm to make this program run under a parallel excution system would be to store the pixel values calculated rather than display them on the screen once they have been obtained.

Distribution of the Application

The Fractal application draws a total of 10 trees. One big tree and 9 other smaller trees to form a grove. The calculations of the pixel coordinates of each tree is mutually exclusive and would unnecessarily be excuted sequentially on a single machine. Using PIPES, this application can now send the function that performs this calculation to available client machines of the Virtual Machine. Thus the calculation of the pixel coordinates can be done in a parallel by the Virtual Machine. Note that this form of parallelism is coarse-grained, and this explains why the Virtual Machine Arcitecture simulates a coarsely-grained parallel computer. As the buffers are received by the Application Server, the Fractal Application need only interpret them and begin displaying the trees.

Chapter

10

Application : FLUID DYNAMICS

Introduction

Fluid dynamics is a branch of physics which deals with the effects of any fluid in motion. Water Resource Engineering is that branch of fluid dynamics which deals with water supply engineering, sewage treatment and analysis etc.

This application is a simulation of water resource engineering problem. The application shows the animation of a sewage getting added to a river.

Theory

Whenever two fluids are mixed (say water flowing on a river and sewage getting added to it as demonstrated in this application) they have the property of diffusing with each other. If one fluid is moving in a river and other is added at some point in the river there are three effects that are observed

Advection

The mixed fluid also gets mixed in the opposite direction of that of the river water. This effect is less observed at water flowing with high velocity

Diffusion

The mixed fluid diffuses in the water in the direction of river water motion. The concentration of the mixed fluid changes with respect to time and displacement from the point of mixing. This effect is called diffusion.

Advection and Diffusion

Sometimes the Advection and Diffusion both are observed in the direction of river water motion at some critical speed. This is Advection and Diffusion.

Let us assume follwoing conventions

u = Velocity of the water in the river

k = Dispersion Coefficient

e = Natural Decay Constant

x = Distance on the river (considering mixing point as origin)

c = Concentration at the mixing point

The following are the formula used for the calculation of the concentrations

Application design

The program finds out the concentration of sewage at various points on the river. The program then maps the concentration values to a set of RGB color value which is used for the display. Animation is achieved by redisplaying again and again by finding the concentration at next increment of water velocity (u).

Distribution

The program finds out the concentration of all points on the river into a buffer and then whole buffer is used for display. Distribution is done while calculating the buffer contents. Calculation involves evaluating the formula for each river point, the server tells all available machines (less than or equal to requested number of machine) to fill the different parts of the buffer respectively. Hence more the machines available more is the distribution and more is the speed achieved. Diagrammatically distribution is as follows.

Chapter

11

Application : HEAT TRANSFER

Introduction

Heat transfer is itself now a branch of physics. Heat gets transferred from one point to another because of temperature difference potential. There are basically three modes of heat transfer that we all know about Conduction, Convection, Radiation. This application is based on heat transfer due to conduction. There are three types of sub-modes under convection depending upon dimension i. e. one dimensional, two dimensional, and three dimensional conduction of heat. This application demonstrates two dimensional heat flow using a hot square iron plate.

Theory

From one point on a two dimensional area (hot square plate) heat flows in all possible directions on the plane of the area wherever the temperature is less than that of the considered point. After finite amount of time steady state reaches i. e. a constant amount of heat per unit time gets transferred and at all points on the plane temperature gets stabilized. There is a constant temperature gradient maintained in the steady state.

In two dimensional heat transfer the temperature at any point on the area in the steady state is the average of the temperatures of the surrounding four points. This is an good approximation as far as the distance between the two points is considered to be infinitesimally small. For all practical application smallest is the distance more accurate the calculated result is and more is the computation needed.

Application Design

Here knowing the temperature all four sides the temperature of the center point is calculated as shown in the above diagram. This temperature is assumed to same over all points on the same horizontal and vertical line through which the center point passes. This logically divides the square area in the four sub square areas which are identical to bigger square (whose all four side temperature is known and are constant throughout the sides). Thus the temperature of all points within the square can be found by recursively applying the same technique.

Once the temperature of all points is known the server machine uses a mapping function from temperature domain to the RGB color value domain. These colors are then used for display. Animation is achieved by continuous display of temperature values calculated by incrementing the input temperatures of all four sides.

Distribution

Dividing the application is easy if the application uses recursion. Here the square plate is divided in four sub-squares on the server machine itself and then different part is given to the different machines for finding out the temperature. Each client machine then uses the area assigned to it and does the computation based on recursion.

Chapter

12

The PIPES Installer

The PIPES installer will install PIPES onto your system. It will detect the Operating System which you are using Windows 9x / Windows NT 4.0 and copy the 2 required Shared DLL’s into the respective system directory. Additionally, it will copy the intelligent DCOM component into a directory specified by you during the installation process and also register the component. The header files and export libraries that are will be required to use the shared DLL’s are also copied into this destination directory. For the benefit of programmer’s, and if the option is selected during the installation process, the PIPES installer will also copy a compressed file of some sample code that we have written to demonstrate the use of PIPES. Among them is the code for the Fractal Application, the Fluid Dynamics Application and the Heat Transfer Application. Furthermore, a help file will be copied into the directory. The help file contains the basic prototypes of the 4 exportables that are essential to the execution of PIPES, how they can be called and the values they return. It also gives an introduction of DCOM and Sockets.

The most interesting program that will be copied onto your destination directory is the Visual PIPES application. You will also be able to fire this application from the Start Menu of the Windows operating system you were using when you installed the PIPES. This tool will create code to help you distribute your existing applications using minimum input supplied by you. It will take care of both Parallel and Distributed System designs as well as Threading models.

A dialog box allows you to fill in details of your application and code is generated which can be copied an pasted into your existing application. The generated files are thoroughly documented to help you make the necessary changes before final compilation. As input, the Visual PIPES dialog box takes the name of the function that has to be distributed, its return type and the requested synchronization type.

Installation Requirements

· NT Server as a PDC somewhere on the network

· DCOM configured on all machines

· Windows NT/9x clients

· A TCP/IP network

Chapter

13

Future Improvisations in PIPES

The most obvious development is to extend the capabilities of PIPES over the Internet. Users should be allowed to log onto the virtual machine through their modems from remote locations. The first thing that has to be changed is the server name that the client is required to enter. Additionally, a suitable method to resolve Client names through IP addresses will have to be devised. Furthermore, the dynamic load scheduling module will have to take into account the bandwidth available at the client side. This will help to reduce the inefficiencies caused by slower Internet connections.

Another development that would be worthwhile would be extending PIPES to work under Linux systems. This is easier said than done as the threading model, performance information, default distributed object model, etc. is entirely different from that of Windows 32 bit environment. Needless to say, many modules of the project will go back to the drawing board to be re-designed and then re-coded.

Lets turn towards the next possible development. The Internet is full of Java programs. Allowing Java based programs to use the interface offered by PIPES might seem trivial through the use of native function calls and wrapper DLLs. However, one basic assumption is that the Java program will run on a Windows 32 bit platform only. While Java does support calls to DLLs written in C++, the method has to be tested. Testing itself should reveal a list of problems and more restrictions that will have to be sorted out before one can claim that Java programs under Windows can cleanly use PIPES.

One interesting development might be to built PIPES into kernel. However, unlike Linux, the Windows kernel is not available in source code form. But the concept is interesting nevertheless even if only theoretical. The scheduler of the Windows kernel will have to be tampered with to include distribution mechanisms offered by PIPES. So now any application that runs on a Windows platform on a machine connected to a Windows NT network could theoretically have part of its program running on some other network node. The ability to decide whether to distribute a task or not will be the extra module that PIPES would have to support when merging it into the OS scheduler. This portion will be quite complicated.

Lastly, we’d like to cover the simple expansions to PIPES. The protocol we have currently used for the Client-Server connection is TCP. An obvious option would be to allow the UDP protocol too.

Also, the current maximum number of clients that PIPES can support is 25. Increasing the maximum number of clients that can be part of the Virtual machine is of great importance to Internet users.

Of course the most practical future development is the use of PIPES as it currently is to day in the development of high-performance applications such as: Server Software, Scientific computations and simulations, Animations and Multimedia, etc.

APPENDIX A : The Socket Interface

Windows Sockets Architectures

Windows NT and Win32 operating systems are able to support several transport protocols with a single API set because of the carefully designed network architectures of these operating systems. Because an understanding of the underlying network architecture is always helpful and frequently mandatory in designing and implementing fast, robust networking applications, we'll briefly describe how Windows Sockets fits into these operating systems.

The key to transport-independent Windows Sockets support in Windows NT is a common kernel-mode transport interface called Transport Device Interface (TDI). All of the networking components of Windows NT go through TDI to access a transport protocol's services. TDI abstracts key differences between protocols, such as the format of transport addresses, and provides common entry points for typical transport features like sending data.

Win32 also supports multiple transports under Windows Sockets, using the same names, WSOCK.DLL and WINSOCK.DLL, for the system DLLs so that application binary compatibility is preserved. However, internally the architecture of Windows Sockets in Win32 is significantly different than Windows NT's architecture.

Stream VS Datagram Sockets

The Windows Sockets model offers service for both connection-oriented and connectionless protocols. In the TCP/IP protocol family, TCP provides a connection-oriented service, whereas UDP (user datagram protocol) offers connectionless service. In the Windows Sockets model, connection-oriented service is offered by stream sockets, connectionless service is provided by datagram sockets.

TCP is a reliable, connection-oriented protocol, used by applications that either plan to exchange large amounts of data at a time, or by applications which require reliability and sequencing. For example, FTP (file transfer protocol), a protocol which facilitates the binary or ASCII transfer of arbitrarily large files, represents an application written to TCP or stream sockets. In contrast, if an application is willing to manage its own sequencing or reliability, or is using the network for low-bandwidth iterative processing, UDP is often used. An application that keeps system clocks synchronized by periodically broadcasting its system time would probably be written to use UDP.

Network-byte Order

Windows Sockets chose the big-endian model for the "on-the-wire" data representation, known as network byte order.The Windows Sockets interface offers APIs to application programmers to do the necessary conversion between the local system representation (or host byte order) and network byte order.

The Basic Structures

Although the Windows Sockets specification contains about a dozen different structures, application developers will quickly become familiar with a few that are required by nearly all Windows Sockets applications.

struct sockaddr {

 u_short sa_family;

 char sa_data[14];

};

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

The sockaddr structure is used by Windows Sockets to specify a local or remote endpoint address to which to connect a socket. An endpoint address simply contains the appropriate information to send data between two sockets on different systems. As the contents of endpoint addresses differ between network protocol families, the sockaddr structure was designed to accommodate endpoint addresses of variable size, satisfying requirements of many common network protocol families. The first field of a sockaddr contains the family number identifying the format of the remaining part of the address.

In the Internet address family, the sockaddr_in structure is used to store the endpoint address information and is cast to type sockaddr for the functions which require it. Other address families must define their own sockaddr_in structures as appropriate for their needs. For TCP/IP, the sockaddr_in structure breaks the endpoint address into its two components: port ID (sin_port) and IP address (sin_addr), and pads the remaining eight bytes of the endpoint address with a character string (sin_zero). The port and IP address values are always specified in network byte order.

Setting Up, and Cleaning Up Your Windows Sockets Application

As mentioned earlier, Windows Sockets offers some extensions to the Berkeley sockets paradigm to allow your application to be more "friendly" in the Windows Environment. All such functions are preceded by the characters "WSA", which is short for "Windows Sockets API." Although the use of WSA functions is strongly advised, there are two WSA functions that your application can't avoid: WSAStartup() and WSACleanup().
WSAStartup() "attaches" your application to Windows Sockets and causes the Windows Sockets DLL to initialize any structures that it might need for operation. Additionally, WSAStartup() performs version negotiation and forces an internal Windows Sockets reference count to be incremented. This reference count allows Windows Sockets to maintain the number of applications on the local system requiring Windows Sockets services and structures. The version negotiation allows an application to determine whether or not the underlying Windows Sockets implementation is able to support the same version of the Windows Sockets specification that the application is written to. A Windows Sockets implementation may or may not support multiple versions of the specification. Other Windows Sockets-specific information may also be filled in such as the vendor of the implementation, the maximum datagram size supported, maximum number of sockets which an application can open, and more.

Windows Sockets on Windows NT

Although the initial focus of Windows Sockets was for Windows 3.1 16-bit applications, Windows NT supports Windows Sockets as well. To run existing 16-bit Windows Sockets applications, Windows NT supplies WINSOCK.DLL. In addition, Windows NT offers 32-bit Windows Sockets support in the DLL called WSOCK32.DLL. In general, all of the Windows Sockets routines in the 32-bit DLL are identical to their 16-bit counterparts, although their parameters are widened to 32-bits.

The most significant difference in programming Windows Sockets applications for Windows NT is that Windows NT is a fully preemptive, multithreaded operating system. Therefore, if an application blocks on a Windows Sockets call, the rest of the system is not negatively impacted. In addition, it is feasible to write a multithreaded application which uses one thread to process user input and another to block on sockets calls. Such an application could use the blocking sockets calls and still be responsive to user input.

The asynchronous Windows Sockets calls are still advantageous in Windows NT. The most significant advantage is that they allow an application to be fully event-driven, fitting better within the Windows programming paradigm. In addition, 32-bit versions of Windows Sockets will soon be available for Win32s®. An application written to use the asynchronous routines can be easily ported to Win32s without the negative system impacts of blocking calls.

Connection-Oriented Vs. Connectionless

In a connection-oriented transport, applications are required to establish a virtual circuit (sometimes abbreviated to Visual C) before data transfer can take place. Virtual circuit establishment is asymmetric: one side, the server, must make known to the transport its willingness to receive incoming connections via the listen() API. The other side, the client, initiates the circuit with the connect() API, and the server can obtain a socket for the circuit with the accept() API. Once the circuit is established, data transfer takes place with the send() and recv() APIs. There is protocol-level activity which results from this circuit establishment, and more protocol activity tears down the circuit when the sockets are closed. TCP and SPX are examples of connection-oriented transport protocols.

In a connectionless transport, there is no circuit establishment required for data transfer. An application only needs to open and bind a socket, after which it may use the sendto() and recvfrom() APIs to send and receive data. Of course, in order to specify the remote address for sending data or the address from which received data was sent, an application must specify a sockaddr to these routines. UDP and IPX are examples of connectionless transport protocols.

It is possible to use the connect() API on sockets opened for connectionless protocols. This is merely an application convenience, allowing the application to use the send() and recv() APIs, and this does not result in any protocol activity. If a socket is connected in this manner, it will only receive packets sent from the connected address; other packets destined for the socket are silently discarded

Orderly Release

For a connection-oriented transport, there are two ways to terminate a virtual circuit: orderly and abortive. In an orderly release, both sides get a chance to indicate that they have sent all the data they intend to send, and only when both sides are done is the actual circuit terminated. For such a release it is possible to have one side indicate that it is done sending with the shutdown() API while the other side continues sending. In an abortive termination of a virtual circuit, one side decides that it is time to terminate the circuit and unilaterally ends the connection. If the other side attempts to use the connected socket, the request fails.

By default, closesocket() also attempts an orderly release of the connection. However, under several circumstances, such as pending unreceived, outstanding send() calls, and more, a closesocket() will result in an abortive close.

All transport protocols support the concept of an abortive release, but not all protocols support orderly release. If an application attempts an orderly release on a transport which does not support orderly release, the connection is terminated abortively. TCP supports orderly release, while SPX supports only abortive release.

Server-side connection setup

Once the socket is created, the server-side associates the freshly created socket descriptor and a local endpoint address via the bind()API. The local endpoint address is comprised of two pieces of data, the IP address and the port ID for the socket. The local IP address is used to determine which interfaces the server application will accept connection requests on; the port ID identifies the TCP or UDP port on which connections will be accepted. It is for these two values that the network byte-ordering routines (htonl(), htons(), etc.) were created. These values must always be represented in network byte order.

Alternatively, an application may substitute the value INADDR_ANY in place of a valid local IP address, and the system will accept incoming requests on any local interface, and will send requests on the "most appropriate" local interface. In fact, most server applications do exactly this. To associate a socket with any valid system port, provide a value of 0 for the .sin_port member of the sockaddr_in structure. This will select an unused system port between 1025 and 5000. As mentioned before, most server applications listen on a specified port, and client applications use this mechanism to obtain an unused local port. Once an application uses this mechanism to obtain a valid local port, it may call getsockname() to determine the port the system selected.

The listen() API sets up a connection queue. It accepts only two parameters, the socket descriptor and the queue length. The queue length identifies the number of outstanding connection requests that will be allowed to queue up on a particular port/address pair, before denying service to incoming connections.

The accept() API completes a stream-based server-side connection by accepting an incoming connection request, assigning a new socket to the connection, and returning the original socket to the listening state. The new socket is returned to the application, and the server can begin interacting with the client over the network.

Client-side connection setup

From the client's perspective, the application also creates a socket using the socket() call. The bind() command is used to bind the socket to a locally specified endpoint address which the server will use to transmit data back to the client. Once a local endpoint association is made, the connect() API establishes a connection with a remote endpoint. This routine initiates the network connection between the two systems. Once the connection is made, the client can begin interaction with the server on the network.

Although the client may choose to call bind(), it is not necessary to do so. Calling connect() with an unbound socket will simply force the system to choose an IP interface and unique port ID and mark the socket as bound. Most client-side applications neglect the bind() call as there are rarely specific requirements for a particular local interface/port ID pair.
Sending and Receiving Data (stream sockets)

Once an application successfully establishes a socket connection, it is ready to start transferring data over the connection. With stream (TCP) sockets, data transfer is said to be "reliable," meaning that the application may assume that the underlying transport will ensure that the data gets to the remote host without duplication or corruption. When a connection is established on a stream socket, a the TCP transport creates a "virtual circuit" between the two machines. This circuit remains open until both applications decide that they are done sending data on the circuit (typically a "graceful" close), or until a network error occurs which causes the circuit to be terminated abnormally.

An application sends data using the send() API. This API takes a socket descriptor, a pointer to a buffer to send, the length of the buffer, and an integer which specifies flags which can modify the behavior of send(). To receive data, an application uses the recv() API, which takes a pointer to a buffer to fill with data, the length of the specified buffer, and a flags integer. recv() returns the number of bytes actually received, and send() returns the number of bytes actually sent. Note that applications should always check the return codes of send()and recv() for the number of bytes actually transferred, since it may be different from the number requested. Because of the stream-oriented nature of TCP sockets, there isn't necessarily a one-to-one correspondence between send() and recv() calls. For example, a client application may perform ten calls to send(), each for 100 bytes. The system may combine or "coalesce" these sends into a single network packet, so that if the server application did a recv() with a buffer of 1000 bytes, it would get all the data at once.

Therefore, an application must not make any assumptions about how data will arrive. A server which expects to receive 1000 bytes should call recv() in a loop until it has received all of the data.Likewise, an application which wants to send 1000 bytes should send() in a loop until all of the data has been sent.

Terminating a Connection

An application has several options for terminating a connection. The simplest is to call the closesocket() API, which takes only a socket descriptor as input. This API frees resources associated with a socket and initiates the graceful close sequence. This sequence is completed when the remote application also closes its socket. If an application determines that it is done sending data, but may want to receive more data, it can call the shutdown() API. This API notifies the remote end that the local application won't be sending any more data, but may continue to receive data.Lastly, an application may cause an "abortive" or "hard" close on a connection with the SO_LINGER socket option in conjunction with closesocket(). Setting the linger timeout to 0 causes the circuit to be terminated immediately, regardless of whether the remote end has completed its data transfer, and any unreceived or unsent data is dropped. Therefore, this option should be used with caution and only if the results are understood and intended.

How can an application know that the remote end has terminated the connection? The answer depends on whether the remote end terminated the connection gracefully or abortively. If the termination was abortive, then send() and recv() calls will fail with the error WSAECONNRESET. This indicates to an application that data may have been lost, and the error condition should be reported to the user.

If the termination was graceful, then any recv() calls made after all data has been received will return the value zero as the number of bytes received. This indicates that the remote end has gracefully terminated its end of the connection and the local end may close the socket without fear of data loss.If an application closes a socket and there is data available to be received, or data later arrives, then the system will abort the connection and throw out the data, since there is nobody to give the data to. Well-behaved applications should ensure that they receive all data before closing a socket.

APPENDIX B : The Client - Server Model

The Client-Server Paradigm is one of the most fundamental models or so to say organization used over a networking system. This model solves the problem of rendezvous that primarily exists in any networking setup by asserting that in any pair of communicating applications, one side must start execution and wait indefinitely for the other side to contact it. This is important because TCP/ IP which is one of the most common protocols used in network communication does not request to incoming communication requests on its own. TCP/IP does not provide any mechanisms that automatically create running programs when a message arrives. For this reason, a program must be waiting to accept communication before any requests arrive.

Definition of a Client and a Server

Clients and Servers are categorized according to the direction of initiation used by the Client-Server Paradigm. A Client is the application that initiates peer-to-peer communication and a Server is any program that waits for incoming communication requests from a client.

Communication between the client and server

End users invoke the client software when they use a network service. Most client software consists of conventional application programs. Each time a client application executes, it contacts a server, sends a request, and awaits a response. When the response arrives, the client continues processing. Clients are often easier to build than servers are, and usually require no special privileges to operate.
Server responsibilities

The server programs must contain code that handles the following issues:

· Authentication – verifying the identity of the client.

· Authorization – determining whether a given client is permitted to access the service the server supplies.

· Date Security – guaranteeing that data is not unintentionally revealed or compromised.

· Privacy – keeping information about an individual from unauthorized access.

· Protection – guaranteeing that network applications cannot system resources.

Servers that handle large volumes of data operate more efficiently if they handle requests concurrently.

Parameterization of Clients

Client software can include generality by allowing the user to specify both, the machine name on which the server operates and the protocol port number at which the server is listening. The parameterization is useful when testing a new client or server because it allows testing to proceed independent of the existing software already in use.

Types of servers

Servers can be classified into many categories. They include

1) Connectionless Vs Connection-oriented Servers

A connectionless style of communication is that in which the server and the client communicate using UDP. A connection-oriented style of communication is that in which the server and the client communicate using TCP.

2) Stateless Vs. Statetul Servers
Information that a server maintains about the status of ongoing interactions with clients is called state information. A stateless server does not keep any state information whereas the stateful server maintains state information. In an ideal world, where networks deliver all messages reliably and computers never crash, having a server maintain a small amount of state information for each ongoing interaction can make messages smaller and processing simpler.

In an Internet where the underlying network can duplicate, delay, or deliver messages out of order or where computers running client applications can crash unexpectedly, the server should be stateless. The server can only be stateless if the application protocaol is designed to make applications idempotent.

Other Points related to a Server

In a network environment that has many available servers, it is not unusual to find a server for one application acting as a client for another.

In addition to the interdependency between servers, concurrency can also exists within a server. Without concurrency a server will be able to handle only single clients at a time. If a server is concurrent, a single server program can handle incoming requests simultaneously from more than one client.

APPENDIX C: Registry Information

The Windows 9x Registry

Introduction

The registry originated in the 16-bit versions of windows, but back then it did not really do a lot. It just stored information for the file associations - a very basic form of the classes used in windows today, OLE and DDE. INI files stored most of the program information. However, INI files had a size limitation and were slow to access due to their linear nature. To further augment the problem, there were no standards defined for creating INI files and all the information required by Windows was fragmented in many different files. Windows9x's registry is much more organized and robust, with a much prettier hierarchical view of information. Besides this, the Windows registry has network support.

The heart of Windows 9x is in the Registry. The registry stores all kinds of data. Apart from being used for storing the same information that Win 3.1 plus maintained, Windows 9x’s registry is also used for Hardware and PnP information, Software settings, User profiles and Performance (VxD) data. Many of the settings you may change within windows will directly edit the registry behind the scenes.

The organization of the registry is like a directory structure. There are 6 primary keys, like directories. Each key can have many secondary keys, like sub-folders. These secondary keys can in turn either have values or a further level of sub-keys. These sub-keys can be nested to any level and levels of 6 or 7 sub-keys are normal. See the diagram below.

Registry Data Types

The basic value types of the keys in the registry are:

Name
Type
Example

REG_DWORD
4 byte integer
0x1234

REG_SZ
Null-terminated string
“Profile”

REG_BINARY
Arbitrary length stream of bytes

00 23 07 49

· Table. Basic value types of the keys in the registry.

Primary Keys

The 6 primary keys are explained below. We are mainly concerned with HKEY_DYN_DATA and therefore it is explained first and in more detail.

HKEY_DYN_DATA

Some Windows 95 information requires fast modification and retrieval. It cannot wait for the Registry to get this information from the hard disk, therefore, the information is stored in RAM. This data is found in dynamic data.

This key points to a branch of the local machine that contains the dynamic status information for various plug and play devices, including the related hardware key and the current status of the device. The dynamic data information is part of the physical file SYSTEM.DAT.

The dynamic data key contains two sections as follows:

Configuration Manager

This section is sometimes referred to as the hardware tree. It contains the current system configuration as a record that is held in RAM memory for rapid access. This hardware tree is created every time the system starts and is updated every time a change occurs to the system configuration, such as when a laptop system is attached to a docking station. Therefore, the information contained in it is guaranteed to be up to date.

Perf Stats

This section contains statistics for various network components.

HKEY_LOCAL_MACHINE

This is the core of the Registry. Stored in the hidden file SYSTEM.DAT, it maintains hardware configuration, installed software, OLE registration.

HKEY_USERS

Stored in USER.DAT, this key contains the default user profile (.default). It also contains the profile of the currently logged-in user. The profiles of users other than the logged-in user are not loaded from disk into the in-memory HKEY_USERS
HKEY_CLASSES_ROOT

Linked to HKLM\SOFTWARE\Classes, this key exists for backward compatibility with Win 3.x applications. It contains everything that only the Win 3.x root key contained: DDE, OLE, File Manager associations, and drag-and-drop information.

HKEY_CURRENT_USER

This key is linked to the sub-key in HKEY_USERS belonging to currently logged-in user. The currently logged-in user is determined by name entered in the logon dialog.

HKEY_CURRENT_CONFIG

Yet another link; this one is to HKLM\Config\xxxx where xxxx is the current hardware configuration. Usually 0001. The current configuration value is stored in HKLM\System\CurrentControlSet\control\DConfigDB\CurrentConfig.

Windows backs up the Registry after every boot. The file SYSTEM.DAT is saved in SYSTEM.DA0 and USER.DAT is saved in USER.DA0.

For more information on the Windows 95 Registry you might want to refer to Ron Petrusha’s excellent, “Inside the Windows 95 Registry,” O’Reilly and Associates, 1996

Helen Cluts, “Programming the Windows 95 User Interface,” Microsoft Press, 1995 (shipped on MSDN CD)

MSVC documentation and the Win32 SDK

The Windows NT Registry

Performance Data

The Windows NT performance data is convoluted (to put it mildly). The following paragraphs try to describe what the performance data looks like. Whenever you query for performance data successfully, you get back a variable-length mass of data; the only thing you know for sure is that the data starts with a PERF_DATA_BLOCK structure (defined in WINPERF.H). All the stuff that comes after the PERF_DATA_BLOCK structure makes the performance data look convoluted.

In working with the performance data, there is a mental model of the performance data that helps keep everything straight. This model is somewhat like a directory/file hierarchy. At the top of the hierarchy is what we will call the "object list." Whenever you acquire a performance snapshot, the data contains an object list with zero or more objects in it. When you ask for a particular kind of performance data (such as the thread list), you may get more objects than you requested. In the case of requesting a thread list, you will also get information about the processes the threads belong to. For this reason, the object-list class has enumeration and lookup functions you must use to access the particular object you are interested in.

What are these objects? In the sense of Windows NT performance data, objects include "Process", "Thread", "Memory", "Processor", "Physical Disk", "Redirector", and several others. It is important to understand that an object may itself be a list. For example, the process object does not mean just one particular process. Rather, the process object means the list of all running processes. Likewise, the processor object is a list, since multiprocessor machines have more than one CPU. On the other hand, the memory object obviously is not a list.

Moving down yet another level, object lists contain zero or more object instances. For example, the process object contains as many object instances as there are processes in the system. Thus, the process object itself isn't that interesting. The object instances within the process object contain the useful information. If the difference between objects and object instances is confusing, do not worry. It takes awhile to grasp it.

If the Windows NT performance data were simple, you would think that each type of object instance (like a process object instance) would have a well-defined format from which you could just pluck the information you need. Alas, this is not the case. The individual bits and pieces of information about an object instance are not located in fixed locations within the object instance. Instead, each object instance contains one or more "counters" tacked onto the end of its data. A counter is like an attribute of an object instance. For a process object instance, the counters include the process ID, the number of threads, the percentage of time spent in privileged operating system code, and so forth. (Yes, in some cases, the term "counter" is misleading.) For a thread object instance, the counters include the priority of the thread and the ID of the process to which it belongs.

Getting at the counters for a particular object instance is tricky because only the raw counter data is stored at the end of each object instance; the information that explains the raw data is located elsewhere. A portion of the data for an object list (not an object instance) is a list of all the counters that apply to the object instances that follow. Returning to the process object example, part of its data is a list of counter descriptions. The counter descriptions can then be used to interpret the raw data in each of the process object instances. Think of the counter description as a structure definition; each object instance has a copy of the structure tacked on to its end.

Just to make sure we have it right, let us recap the object list description, this time tying it to structure names from WINPERF.H. The performance data starts with a PERF_DATA_BLOCK structure, which tells you how many performance objects are in the object list. Following the PERF_DATA_BLOCK structure is the actual object data. Each object starts with a PERF_OBJECT_TYPE structure. Each object in turn contains zero or more object instances. Each object instance begins with a PERF_INSTANCE_DEFINITION structure. Besides containing a list of object instances, each object also describes one or more counters. The counters describe the data that ends each object instance. Each counter definition is a PERF_COUNTER_DEFINITION structure.

As a final theoretical note, lets clear up the issue of objects that do not have object instances—like the memory object. These objects still have counters. However, the counters do not describe the raw data at the end of an object instance. Rather, the counter definitions describe the data at the end of the object itself. Part of a counter definition is the offset of the raw counter data from the end of an object instance. In the case of an object without instances, the counter offsets are relative to the end of the counter descriptions.

The figure above shows a hypothetical performance snapshot. It starts out with a PERF_DATA_BLOCK header. Following the header are three performance objects (a system object, a memory object, and a process object). Each object starts with a PERF_OBJECT_TYPE header. The two objects (system and memory) that do not have object instances end with counter definitions (PERF_COUNTER_DEFINITION) followed by the counter data. The process object also has PERF_COUNTER_DEFINITION's, but they are followed by two process object instances (the PERF_INSTANCE_DEFINITION structures).

For more information on the Windows 95 Registry you might want to refer to Ron Petrusha’s excellent, “Inside the Windows NT Registry,” O’Reilly and Associates, 1996

MSVC documentation and the Win32 SDK

APPENDIX D : KLOC

APPENDIX E : PERFORMANCE GAINS

APPENDIX F : PROTOTYPES OF FUNCTIONS

THE EXPORTABLES PROVIDED IN THE SERVER DLL

1. StartDCE
__declspec(dllexport) long _stdcall StartDCE (

 DLLPARAMETER DllParameters [],

 int nSyncType,

 int nNumberOfMachines
);

The most important exportable from the Server DLL is StartDCE(). This exportable starts the parallel execution of the function that is given to it on the machines which it selects based on their merit of performance.

Parameters

DllParameters

 This is an array of DLLPARAMETER with at least nNumberOfMachines elements. If this parameter is specified as NULL then StartDCE() returns the number of clients currently logged on to the server.

The DLLPARAMETER structure is defined below:

struct DLLPARAMETER

{

char * szDllName;

char * szFuncName;

long lSizeOfInBuffer;

char * pbInBuffer;

long lSizeOfOutBuffer;

char * pbOutBuffer;

HRESULT hr;

};

nSyncType

Selects the type of synchronization needed. There are two types supported:

0 - The distributor waits till all the processes on all the client machines finish.

1 - Distributor waits for the 1st client machine that completes it’s processes successfully.

nNumberOfMachines

This specifies the minimum number of machines that the application has requested for the execution of the job given. In turn, this specifies the number of elements passed in DLLPARAMETER structure.

2. SetServerState

__declspec(dllexport) void _stdcall SetServerState(

void *ThresholdReceived
);

This function is used to be specific about the client nodes to be chosen. If the parameter has a NULL value, the default threshold values are used.

Parameters

ThresholdReceived

This parameter sets the threshold values for the client node’s performance parameters. These values are set by the application built on PIPES.

The structure of the parameter is as follows

struct PARAMETERS

{

 double Weight; // importance of parameter from

 application point of view

int Ignored;
// to ignore the parameter if

 required

 double Value; // the threshold value required

 double Factor; // the unit for the parameters

};

3. SetupServerForTCP

__declspec(dllexport) void _stdcall SetUpServerForTCP(

void

);

This function is to invoked in a separate thread so that it’s functionality as described below is utilized to it’s maximum.

This function attempts to start the server using the TCP protocol. The Server also creates threads to analyze the most recent performance data from each client. It maintains the necessary buffers and to communicate with a Client (independent thread for each client).

Parameters

No Parameters

THE EXPORTABLES PROVIDED IN THE CLIENT DLL

1. SetupClientForTCP

__declspec(dllexport) int _stdcall SetUpClientForTCP(

LPTSTR ServerName

);

This function checks the Winsock.dll version, gets computer name and OS version information.

Parameters

ServerName

The name of the server to connect to (can be taken from user through a dialog)
CONCLUSION

PIPES allows you to write & execute parallel or distributed programs or rewrite existing serial code easily to tap the power of a network with little or no knowledge of network programming or DCOM.

REFERENCES

[1] Guy Eddon and Henry Eddon, “Inside Distributed COM”, Microsoft Press 1998

[2] Ron Petrusha, “Inside the Windows 95 Registry,” O’Reilly and Associates, 1996

[3] Ron Petrusha, “Inside the Windows NT Registry,” O’Reilly and Associates, 1996

[4] Helen Cluts, “Programming the Windows 95 User Interface,” Microsoft Press, 1995

[5] Bjarne Stroustrup, “The C++ Programming Language”
[6] Frank E.Redmond, “DCOM”, Comdex

[7] David J. Kruglinski, “Inside VC ++ 5.0”, Fourth Edition, Microsoft Press

[8] Shirley Wodtke, “Learn the MFC C++ Classes”, BPB Publications 1997

[9] Douglas E. Comer “Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture”, 3rd Edition.

[10] Douglas E. Comer and David L.Stevens, “Internetworking with TCP/IP, Volume III: Client-Server Programing and Application”, PHI 1997

[11] David F. Rogers, “Procedural Elements for Computer Graphics”, MGH 1985

[12] Donald Hearn and M. Pauline Baker, “Computer Graphics”, Second Edition, PHI 1995

[13] “Win32 API Super Bible”

[14] Matt Pietrek, Microsoft Systems Journal, “Under The Hood”, MSDN CD 1997

Technical Literature:

[1] MSVC documentation and the Win32 SDK

[2] The NOW project, University of Berkeley

[3] PAPERS, Purdue University

[4] Parallel Virtual Machines, World Wide Web

[5] Message Passing Interface, World Wide Web

[6] LINDA, World Wide Web

[7] Clusters of Linux, World Wide Web

TABLE OF CONTENTS

1ABSTRACT

AIM OF THE PROJECT
2
ANALYSIS OF THE PROJECT & DESIGN
3
Internal Working of PIPES
4
PIPES Architecture
5
Project Requirements
6
Security Aspects
6
Restrictions of PIPES
6
Server Module
7
The Distributed Environment
7
BestNode Selection Algorithm
7
Synchronization Logic
9
DCOM Client
9
DCOM Component
10
Marshalling and Unmarshalling
11
Dynamic Link Library in PIPES
11
FEW FEATURES OF TCP / IP
12
USE OF SOCKETS IN PIPES
13
Introduction
13
The Socket Abstraction and Data structures used for Sockets
13
Using Sockets
13
Summary of the Socket Calls for TCP
14
Setting Up the Client and Server Sockets
15
Server Using PIPES
16
Client Using PIPES
17
DCOM
18
Introduction
18
Characteristics of COM
19
COM Components and Interfaces
19
DCOM Library
21
GUID and Security in DCOM
22
Marshalling and Unmarshalling
22
The Distributor Function
24
Parameters
24
Return Codes
25
The DLLPARAMETER structure
26
The THREADPARAMETER structure
27
Performance Data Interpretation Module
28
Why is it necessary ?
28
How is Dynamic Load Scheduling Done
29
Windows 9x Performance Data Interpretation Module
29
Windows NT Performance Data Interpretation Module
31
Application : BITMAP
38
Types of Bitmaps
38
Working with a Bitmap
39
Distribution of the Application
39
Application : FRACTALS
40
How to draw a Fractal Tree
40
Changes required for Parallelization
41
Distribution of the Application
41
Application : FLUID DYNAMICS
42
Introduction
42
Theory
42
Application design
44
Distribution
44
Application : HEAT TRANSFER
45
Introduction
45
Theory
45
Application Design
46
Distribution
47
The PIPES Installer
48
Installation Requirements
48
Future Improvisations in PIPES
49
APPENDIX A : The Socket Interface
51
Windows Sockets Architectures
51
Stream VS Datagram Sockets
51
Network-byte Order
52
The Basic Structures
52
Setting Up, and Cleaning Up Your Windows Sockets Application
53
Windows Sockets on Windows NT
53
Connection-Oriented Vs. Connectionless
54
Orderly Release
54
Server-side connection setup
55
Client-side connection setup
55
Sending and Receiving Data (stream sockets)
56
Terminating a Connection
56
APPENDIX B : The Client - Server Model
58
Definition of a Client and a Server
58
Communication between the client and server
58
Server responsibilities
58
Parameterization of Clients
59
Types of servers
59
Other Points related to a Server
59
APPENDIX C: Registry Information
60
Introduction
60
Registry Data Types
61
Primary Keys
61
HKEY_DYN_DATA
61
Configuration Manager
61
Perf Stats
61
HKEY_LOCAL_MACHINE
62
HKEY_USERS
62
HKEY_CLASSES_ROOT
62
HKEY_CURRENT_USER
62
HKEY_CURRENT_CONFIG
62
Performance Data
63
APPENDIX D : KLOC
66
APPENDIX E : PERFORMANCE GAINS
68
APPENDIX F : PROTOTYPES OF FUNCTIONS
69
THE EXPORTABLES PROVIDED IN THE SERVER DLL
69
 StartDCE
69
 SetServerState
70
 SetupServerForTCP
71
THE EXPORTABLES PROVIDED IN THE CLIENT DLL
71
 SetupClientForTCP
71
CONCLUSION
72
REFERENCES
73

Acknowledgments

Throughout the academic year, we worked on our project, except for the period during the examinations of the seventh semester. In fact, there were days when we felt that we would exhaust ourselves completely after a long day of debugging with no results. The view we started off with as “entry-level” final-year engineering students was, now we realize, very immature and unstructured. Just a thought, not even an idea, and a dream of what it must be like. While writing this, at the level we have reached today the thought has been implemented in such a structured manner that we are amazed. Although, at this level we we cannot boast of experience and knowledge, we can stand up with eager, curious minds and with a better understanding of a small section of software engineering and the confidence to learn the rest in the years to come.

This beautiful method of working and the drive to learn and finish our work in a well-engineered manner can only be attributed to our project guide and advisor, Mr.Umeed Kothavala, of Extentia Information Technology Pvt. Ltd.

During the process of getting this idea refined we had consulted with a few academicians. We are extremely grateful to Dr. Ranade and Dr. N.L.Sarda of NCST, Mumbai, and Mr.S.M.Joglekar, for their time and patience for listening to our perspective and helping us to get it shaped into an practical concept.

Let me also haste to add that the reassurance provided by our Head of Department, Dr. S.A.Kulkarni and Prof. Girish Potdar, boosted our morale and helped us keep the ship sailing. We are especially grateful for the resources Dr.S.A.Kulkarni provided us during Impetus and Concepts to help us display our project.

T1 + T2 + T3 + T4

4

Right Temperature

T3

Left Temperature

T1

Top Temperature

T2

Bottom Temperature

T4

DCOM

PIPES

Application Program

Performance

Data

Interpretation

Transport

Proxy / Stub

RPC run time

Sockets

COM library

Right of River

Left of River

Concentration

Water Flow

Advection Only

Point of Mixing

Right of River

Left of River

Concentration

Channel

	

 COM library

Transport

RPC run time

Stub

Machine # n

Machine # 3

Machine # 2

Machine # 1

Strip # 1

Strip # 2

Strip # 3

Strip # n

Component.exe

Diffusion Only

Water Flow

Concentration

Left of River

Right of River

Machine

Boundary

Advection and Diffusion

Water Flow

�

� EMBED Equation.3 ���

Concentration to the left side of mixing point

Concentration to the right side of mixing point

� EMBED Equation.3 ���

�

Buffer of River Co-ordinates

Area given to Machine 1

Area given to Machine 2

Area given to Machine 3

Area given to Machine 4

 1	 2		3	- - - - - - - -					 n

Concentrations found by Machine n

Concentrations found by Machine 1

Transport

RPC run time

Channel

Proxy

Point of Mixing

Point of Mixing

Client.exe

	

 COM library

Machine Boundary

DCOM

DCOM

Component Process

IUnknown

DCOM

Object

Client Process

DCOM

Component Process

IUnknown

DCOM

Object

Client Process

Client Process

IUnknown

DCOM

Object

(1)		 (2)				(3)				(4)

Value 2

Value 1

Key 2

Key 1

Heirarchical Structure of Windows 9x’s Registry

� EMBED Word.Picture.8 ���

2

_983716980.unknown

_986926038.doc
[image: image1.png]nsance deiiion |
(A RSTARCE BT

s)
e

TER. DEFINTI

Mimorytject
Bseneas)

Sy et
i)

i

[
Increading

_983716933.unknown

