Check-pointing Process Heaps and Cleaner API
Interception for Process Migration

Fal 2000 — MCS Project

Mujtaba Khambatti

Project Advisor

Dr.Partha Dasgupta

Project Reader

Dr.Dondd Miller

1 Introduction

Over the past decade, there has been a lot of research culminating in different implementations
for Process migration. Today, the term ‘process migration' has a different meaning to most
people. For instance, earlier attempts at process migration focused on load baancing of
processors in a distributed system [1, 4, 5]. However this conventional interpretation is not
entirely true today. Extensive kernel support for such preemptive load balancing efforts had high
overhead and also was found to be unnecessary [1].

We have shown that by targeting shrink wrapped applications we can use process migration to
increase mobility, collaborative work, distributed systems management, automatic
reconfiguration and fault tolerance [1, 8]. Moreover al this can be achieved without
modifications to the kernel or the applications. Therefore the term * process migration’ takes on a

different meaning in contemporary computing.

This approach of process migration relies on a concept called APl interception that enables
virtudization of resources. APl interception essentialy is a method of capturing the interactions
between the application and the Operating System at the API level and possibly recording those
interactions as information about the application. Virtualizations centers on de-coupling the
gpplication from the resources provided by the operating system, like files, network connections,
etc. [1, 6,9, 10]

My goals for the MCS project were the following:
1. Document existing code written by Ravikanth Nasika towards his Master’ s thesis [2].
2. Implement process migration using the mediating connectors library.
3. Checkpoint the heaps of a process so that they can be brought up again at a new location.

2 Background

2.1 APl Interception

For the purpose of process migration it is necessary to capture the state of the process as it was on
the origind machine in order to re-create the same state on the destination machine. A process
can be thought of as comprising of binary information within its own process space and externa

connections. The former includes process text and data, while the latter encompasses connections
with the operating system or anything that is outside the process space that the process itself does
not have direct access to. Obtaining the external state of the processislesstrivial asthe records of
these connections are maintained outside the process space. It is our experience through work in
API interception [2, 3] that the external state of the process needs to be captured from the time of
creation of the process, i.e. when the process is loaded. For this purpose we use APl interception
techniques [2, 3] that will acquire crucia information about the process like: what files it opens,

what graphics devices it uses or what network connections it establishes [1]. In brief, API

interception makes possible the following seemingly difficult tasks:

* |t provides the application with new facilities without changing the code of the application.

* |t incorporates more features into the operating system, without changing the API calls.

2.2 Virtualization

Virtualization is the fundamental idea behind the power of a process migration mechanism [9,
10]. As aconcept it is dready very much prevalent in contemporary computing. Any process can
be considered to be a virtuaization of a CPU that runs within alogical address space and accesses
virtual memory [1]. For the purpose of process migration, we extend the scope of the
virtuaization model to include dl the CPUs, memory and operating systems available to us. This
will give us a high level view of a distributed system whose elements have been virtualized at the
globd leve.

An application operates from within a shell. The shdl is responsble for de-coupling the
application from the operating system without the application noticing any difference in its
environment. This makes it possble to map al the identification information, like resource
handles, that the operating system actually uses to virtual handles that can be given to the
gpplication by the shell. The mapping between the physical handles and the virtual handles can

further be atered to enable the process to operate on a completely different machine with new
physica handles for its files and network connections, etc. without noticing any change in the
environment. We have successfully implemented such virtual handle trandation tables [2, 3].

3 Documentation of existing code

This involved a certain amount of reverse engineering since there never was any meseting with the
author of the code. As aresult of the documentation effort, we now have a web-based explanation
of the code that Ravikanth wrote. | have dealt with most of the important portions of the code that
are critical to understanding the method he followed. The remaining part of the documentation
overlaps with the process migration that | demonstrated. Therefore the documentation of those
parts is the same as the explanations that | have given as fulfillment of my second goal.

Following are some of the screen shots of the web-based documentation of the code:

=0z
[# |
= E B A 1 S N R T R S e [[-
peddenna R AT A s T ol o P v ok e j ol =

(5 L it

Fig.1: This shows the index page that list the 3 modules that were used in the process migration.

1T oM P b 0 L b s of B D sl i, - M mandt b it bt =
R Bl Yew Facas Toob Hep -
lwhr = QA Qe (o, ey | B 3] e P R

tativees B Aol ek s s ol H v Dt LL b

J e

it TWOHD VKR Thes ndancf PR I O ale Lk ik I

I JiETE |

HamniL, | | {prasiad HISTANCE FMART PROCLOAILIBRANT||

el Braryip i L B »pEL EFds) ippesdef wiLr
|

PO 0RO BAART inlcard bory:

Tl army T T L | FHOO REFLBRART I wei trary,

EifTE pll Fle &% FATH * masslcH
(LT T S TR

e ————— !

i o Mm Thrmadfens o

v HODL bnje cLEASOARANDLE HFrecere el IYTE ™ cone phlefi s BOL LnCrie)
s HEETEN adionl_Jpmaioill] — -
== LT WLk

I = nnd = |

pooL = FLl |

[FATRD HieFwiect framios b o il .
! - e = s
8] Do (5 L bt

Fig.2: Thisisan example of the documentation structure for one of the modules.

Yienn Sun peeean (f ancth iseed roe e can Aplicws e s |

“Vitw g Fwwed fan e

Fig.3: Apart from the cross-references and ease of readability that was demonstrated in fig 2, the
above displays the textual comments that were included for sections of the code.

4 Implementing Process Migration with Mediating Connectors

4.1 Mediating Connectors

This toolkit provided by the University of Southern California, Information Sciences Ingtitute,
makes use of mediators and wrappers. The mediation of one or more APIs from a shared library
provides, in effect, a new library that relies on the original. The new library exports the same
interface as the original, and actualy shares with the origind, the binary code that is common to
both. The wrapper author is relieved of the need to re-implement any portion of the library he
does not wish to mediate. A wrapper comprises of a set of mediators. Each mediator in the set
mediates a distinct function, which must be a function exported from some shared library. The
functions mediated by a wrapper need not all come from the same library. A mediator has access
to the same parameters as the function; and its return value, if any, will be seen as a value
returned by the function. Within its implementation, a mediator may choose to cal the actua
function one or more times, using the result(s) of the call(s) to compute its own result. [11]

4.2 Wrapper Definition

The wrapper definition is done in atext file that can be used by the provided API for the purpose
of API interception at runtime. A wrapper definition looks like this:

wr apper nane inplenmentation "C:.\ Code\ Wapper Def\ nanme. dl | "
wrap CreateProcessWin kernel 32 with My_Creat eProcess size 40

wrap CreateThread in kernel 32 with M/_CreateThread size 24

4.3 Wrapper Implementation

A wrapper is implemented by a Windows dynamic linked library. The wrapper’s mediators must
be functions exported from this library. A mediator must return the same type as the function it
mediates. Every mediator must have its first parameter astype voi d* [11].

A mediator for the API Cr eat eThr ead looks like this:

__decl spec(dl |l export) HANDLE W NAPI My_CreateThread(void *icall,
LPSECURI TY_ATTRI BUTES | pThreadAttri but es,
DWORD dwsSt ackSi ze,
LPTHREAD_START_ROUTI NE | pSt ar t Addr ess,
LPVA D | pPar anet er,
DWORD dwCr eat i onFl ags,
LPDWORD | pThr eadl d)

{
[* perform anything here */
HANDLE rslt = (HANDLE) I nnerCall (icall);
return rslt;

}

4.4 Wrapper Programming

The dynamic linked library that is shipped along with the Mediating Connectors tool exports the
functions that are needed to load and unload the wrapper in the process specified. Additionally it
provides debugging functiondity. The two important functions of thisDLL are:

BOOL W apProcess (const char *WapperDefinitionFil ePath,

const DWORD pi dOF Process, void *Wapper Par am
const BOCL secure)

enum Unw apResul t { UN\VRAPPED, PROCESS_ NOT_ACCESSI BLE,
NO_SUCH_WRAPPER} ;

Unw apResul t Unwr apProcess (const char *W apper Nane,

const DWORD pi dOF Process)

4.5 Architectural Changes

The origina process migration [2] is carried out using 3 important modules mentioned bel ow:
1. The process |oader
2. TheDLL injector
3. Theinjected DLL and check-pointing code.

4.5.1 The Process L oader

This module is responsible for loading the process that potentialy might be migrated. This
module is cdled the middle layer, migrator, or VEX [12]. It Sts on individual machines and
alows the creation of a process that potentially can be migrated in the middle of its execution.
The loader is closdly coupled with the DLL injector. Since the Mediating Connectors toolkit now
provided functionality for wrapping of the API calls made by a process, we could do away with
the DLL injector. Thus the coupling between the first two modules was removed and a Wrapper
library call was made for a smple and clean injection of a specified DLL into the loaded process.

4.5.2 The DLL injector

This module allocated memory in another process and then created a remote thread in that
process. The procedure for DLL injection is described in detail in [2, 7]. Since the toolkit
performed this operation, we no longer needed the injector.

4.5.3 Theinjected DLL and check-pointing code

According to specifications of the toolkit, the injected DLL had to contain the mediators for the
API calls that we were interested in modifying. So the initid part of this assignment was to write
the mediators for the APl calls so that when the application made these cals, important
information could be saved in data structures or files. This information would help define the
external state of the process in terms of the open resources that it currently was using and aso
help identify internal state changes that took place at runtime, like heap creation, etc. Thus the
mediators were written to maintain records of whatever might seem interesting.

Following isalist of some of the mediators that were written:

Original API Name of M ediator

Creat eProcessW My Creat eProcess

Cr eat eProcessAsUser A| My_Cr eat eProcessAsUser
Creat eThr ead My_Creat eThr ead
Virtual Al l oc nyVirtual Al l oc
HeapCreat e myHeapCr eat e

HeapAl | oc nmyHeapAl | oc

Cet St dHandl e my CGet St dHandl e

Sl eep nySl eep

Set St dHandl e nmy Set St dHandl e

Apart from implementation of these mediators in the wrapper, the toolkit required that on process
termination (which would happen during a migration event), the injected DLL be unloaded.
Therefore, code was added to ensure that the wrapper was successfully unloaded from the process

memory.

Further, there was a fair amount of re-use from the origina work done by Ravikanth in the
implementation of the check-pointing code. However during his thesis work he was unable to
successfully migrate processes with heaps. As part of the third goal, | implemented code that
made heap check pointing successful.

10

5 Check pointing the heaps of a process

A simple process was created that alocated memory usng new / malloc(), ad
HeapAl | oc() function cals. The heaps were check-pointed into a file a the end of the
process and then successfully brought up again on a new machine.

Following are some screen snapshots of the process that check-pointed heaps:

5.1 First Execution

The process asks if there exists a previous image of the heaps to load. Then it asks for some data
to store in each heap and allocates an arbitrary amount of space in each heap. Before process
termination it displays the number of heaps of that process and the data that was stored in them.
The last string on the console was hard-coded data allocated to the CRT heap. All heaps are now
check-pointed into a binary file.

=4 Fateol C:NWIRNT '|'|'|"|r.l.l.\|3:'."||..aﬁ.E:'!_£

s=Gade~HespErade®s bebug dF eapBTidy . gxe
Load Previeus Lnoge? n
iefors any alloceatisn. Fress key to begin spplication.

The handle of the default process hoap iz Bl 3AG0EE

nkew a akrimg to stovs in defaslt beap? Dumo

Thi: 40020E hyta steing kas been succestfully allocated on dafaslc Heap.
Fresa & kEy Co g0 om.

Enter & strimyg to store in snether keap: CEE

ihe 48% hwts ctrieg has besn succesefully allocated an snether Beap
Frozs a koy ko go oom.

“nker & skrimg to zkove in lezk beap! Hugtaha

The 58 byre strding has Been seceessFully allocaced on last heap.
freso a key to 9o oas

Ihe HWanbew of Heaps = G
Frldr B O136BEA

fuddr 1 ZIAAAA

Rddp 2 ZARAA W
el 3 A0 BHA

il A S50 BIN

el 5 RO BYR

The steimgs weve: Dbeno

k5

et ahay

Frezc & key to fres h=ap

Hed Lot Ld

The allocated seeery bBluck haz been freed from defaslt hoap.

H = =l ol Hi 2 o il g’ DB

" _—

Fig.4: First Execution of the process

11

5.2 Second Execution on a different machine

The second time the process can be executed on a different machine. This time we bring up the
check-pointed heap binaries and load them into the process space. This method has been
successfully tested on different machine configurations of the Intel Pentium series and aso on
machines with Windows NT and Windows 2000.

| Sheact I WWER T b aleen 12 OH I EXE =10 il
.
li=Gode~Hoa dwBebug M eapbtudy.oxe =
..... d P 1
Oefere any allocation. Fress key to begln epplication.
ihe Bamdle of the default process heap iz Bxl 30808
The ztrings were! Beno
“EE
: a key to Feee heap.
{e 1 1lothoe1d
|2 GndeHe s pEtud s Bebug
v
il _

Fig. 5: Second Execution of the process

The Mediating Connectors toolkit is used here again to provide mediators for the following cals:

Original API

Name of M ediator

Virtual Al'l oc

nyVirtual Al l oc

HeapCreat e

myHeapCr eat e

The Process Execution Block (PEB) is accessed as described in [2]. This provides vita
information about some of the process heaps. The memory region of the process is queried to find
out information about certain ranges of pages within the process memory that coincide with the

heaps. The binary information from these heaps is then check-pointed into a file that can be
restored later.

An intereting observation is that the CRT heap is implemented as a doubly linked list of blocks.
The current implementation algorithm is not guaranteed to be compatible with future releases of
the library. So especialy for the CRT heap it is not advisable to checkpoint only the blocks that
have data within hem. However to provide a more universal approach, an entire section of
memory between the CRT heap base address and the beginning of the data section is check-
pointed. Although this might seem like a lot of memory to dump into a file and reload again, one
must be reminded that the focus is not on the execution efficiency of a heap checkpoint. The

measurement of the overhead incurred in such a checkpoint might comprise part of future work or
further study.

13

6 Conclusion

I have successfully implemented al three parts of the goals that | had determined at the beginning
of my MCS project. | am grateful to Dr.Partha Dasgupta for providing me both the resources and
the advisement during the course of this project. | adso wish to acknowledge the effort of
Dr.Donald Miller who has taken his time to review and certify this project document by his
valuable experience in related fields of work.

14

7 References:

[1] Dasgupta P. General-purpose Process Migration, http://cactus.eas.asu.edu/partha/Papers-
PDF/proc-migration.pdf

[2] Nasika R. “Migration of Communicating Processes Via APl Interception”, Master’s thesis,
Arizona State University, 1999.

[3] Hebbadu R. “File Input/Output and Graphica Input/Output Handling for Nomadic Processes
on Windows NT”, Master’ s thesis, Arizona State University, 1999.

[4] Litzkow M. “Remote Unix Turning Idle Workstations Into Cycle Servers’, Proceedings of
Usenix Summer Conference, 1987.

[5] Petri S., LangendOrfer H., “Load Baancing and Fault Tolerance in Workstation Clusters
Migrating Groups of Communicating Processes’, Operating Systems Review, Vol. 29, No. 4,
October 1995, pp. 25-36.

[6] NasikaR., Dasgupta P., “ Transparent Migration of Distributed Communicating Processes’,
13th ISCA International Conference on Parallel and Distributed Computing Systems (PDCS-
2000). August 2000.

[7] Richter J. “ Advanced Windows’, Third Edition, Microsoft Press.

[8] McLaughlin D., Sardesai S., and Dasgupta P., “ Preemptive Scheduling for Distributed
Systems”, 11™ International Conference on Parallel and Distributed Computing Systems, 1998.

[9] Baratloo A., Dasgupta P., Karamcheti V., and Kedem Z.M., “Metacomputing with MILAN”,
Heterogeneous Computing Workshop, International Parallel Processing Symposium, April 1999.
[10] Dasgupta P., Karamcheti V., and Kedem Z.M., “ Transparent Distribution Middleware for
Genera Purpose Computations’, International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), June 1999.

[11] Bazer, R.M.; Goldman, N.M., “Mediating Connectors’, Information Sciences Institute, 19th
|EEE International Conference on Distributed Computing Systems Workshops, 1999.

[12] Boyd T., Dasgupta P., “Virtuaizing Operating Systems for Seamless Distributed
Environments’, 12th IASTED International Conference on Pardld and Distributed Computing
and Systems (PDCS 2000), November 2000.

15

