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ABSTRACT 
 

Peer-to-peer systems have the ability to harness vast amounts of resources from a 

scalable collection of autonomous peers and especially emphasize on de-centralization 

and lack of a central authority. As a result these systems are particularly attractive to 

everyday home computer users, who seem empowered by the potential to independently 

select and change their own policies, roles, and responsibilities. By allowing peers to 

share a portion of the authority, these systems also possess other interesting technical 

characteristics such as self-organization and adaptation. 

This dissertation introduces the notion of interest-based communities of peers and 

describes how these implicit structures can be used to naturally organize peer-to-peer 

systems for discriminative information dissemination, pruning the search space, and role-

based trust. Communities are like interest groups, modeled after human communities. 

They are self-organizing, possibly overlapping structures involving peers that are actively 

engaged in the sharing, communication and promotion of common interests. 

Initially, the behavior of randomly created communities is investigated and 

modeled. Then the community formation and discovery algorithms are presented and 

their complexity studied. The experiments illustrate that these algorithms do not require 

extensive computation or communication on the part of individual peers. Subsequently, a 

novel push-pull gossiping technique is provided that improves decentralized information 

dissemination by communicating only amongst peers within a specified community of 

interest. The technique enables the maintenance of dynamically changing communities 

and consists of a distributed discovery algorithm followed by repeatable push-pull 

gossiping. Experiments show that pushing gossip information to only a small number of 
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peers allows a large percentage of peer members of a community to obtain (pull) the 

information within just two hops. 

Peer communities help in pruning the search space and in content-based searches 

within the peer-to-peer network. This dissertation describes a community-based search 

query propagation scheme which provides more efficient searching by targeting one or 

more communities, irrespective of the current membership of the searching peer. The 

experiments demonstrate how a community-based search can reduce the number of 

messages and improve the quality of the search results when compared to other known 

peer-to-peer search algorithms. 

Finally, an approach for community-based trust management is discussed. An 

optimistic role-based model for trust amongst peers is employed and it is shown to be 

scalable, dynamic, revocable, secure and transitive. The solution permits asymmetric trust 

relationships that can be verified by any peer in the system through a simple, low-cost 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Most earlier multi-computer, distributed systems projects were built either using a 

client-server architecture or as a collection of independent computers that appeared to its 

users as a whole. The challenges faced by systems adhering to either paradigm were: 

transparency, scalability, fault tolerance, heterogeneity, and openness. Client-server 

applications generally adopted a network operating system design and therefore had the 

advantage of openness, heterogeneity and scalability. However, with dependence 

invested in the server/s, many client-server applications suffered due to low fault 

tolerance. On the other hand, middleware based operating systems offered high 

transparency, heterogeneity and openness. The downside in this case was that all 

computers had to conform to a standard interface and policies set by the designers of the 

middleware. 

The emergence of decentralized and dynamic file-sharing applications, such as 

Napster in 1999 and Gnutella in 2000, provided the catalyst that drew a lot of attention to 

a new breed of distributed systems called peer-to-peer (P2P) systems. We define a peer-

to-peer system as a distributed system in which network-addressable computing elements 

called peers have comparable roles and responsibilities, communicate information, share 

or consume services and resources between them. The ability of peer-to-peer systems to 

harness vast amounts of storage from a scalable collection of autonomous peers and its 

emphasis on de-centralization and lack of a central authority have made it an attractive 



 

 

2

systems solution to everyday home computer users, who seem empowered by the ability 

to independently select and change their own policies, roles, and responsibilities. By 

allowing peers to share a portion of the authority, these systems also possess other 

interesting technical characteristics such as self-organization and adaptation. 

Throughout this dissertation, the term �peer� is used interchangeably with �node�, 

to refer to a network-addressable computing element, like a desktop personal computer, a 

laptop computer, a personal digital assistant, a networked printer, or any other electronic 

device that has the capability of computation and network connectivity. We assume that 

each peer has a static IP address that serves as the peer identity. While this assumption is 

not universally true, it can be facilitated through various techniques (dynamic DNS, IPv6, 

or firewall penetrating mechanisms) that are outside the scope of this dissertation. 

Current peer-to-peer systems are often targeted for global information sharing, 

replicated file storage, and searching by using an end-to-end overlay network. The 

building block of these systems is the notion of a peer-group, or a number of peers that 

cooperate with each other for a common purpose. In our research, we investigate a 

generalization of the notion of peer group to a multiplicity of groups (possibly 

overlapping) called peer communities.  While a group is a physical collection of objects, 

a community is a set of active members, who are involved in sharing, communicating and 

promoting a common interest. 

Our concept of peer communities is loosely based on the idea of �interest groups�, 

such as Yahoo Groups, Usenet Newsgroups, or web communities. The user of a peer in 

the system claims to have some interests and depending upon the claims of all the peers� 

users, communities are implicitly formed (made up of peers with the same or similar 
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interests). Note that communities are formed implicitly, i.e. they are self organizing. If a 

peer in New York declares an interest in wombats, and a peer in China also declares the 

same interest, then the two peers become part of an implicit, undiscovered community. A 

peer may belong to many different communities and communities may overlap. 

With the exception of web communities that have been shown to be self-

organized (Flake et al., 2002) and the alt.* Usenet groups; almost all other present-day 

groups are a result of a priori planning and implementation or at the very least they 

require some central control or a central authority through which advertisements can be 

made. In contrast to this, peer-to-peer systems are usually completely de-centralized and 

can also be dynamic. 

We associate a peer-to-peer network with graph G (V, E), where the set of nodes, 

V, represents peers and the set of edges E consists of end-to-end overlay links between 

pairs of peers from V. We consider this network of peers as being analogous to social 

networks that are comprised of humans. In fact, much of our proposed modeling of peer-

to-peer networks was motivated by our observations of similar patterns in social 

networks. For instance, the inclination of autonomous elements in a social system to form 

groups and associations led us to believe that a populated peer-to-peer system that is 

made up of peers and an end-to-end overlay network will also form similar groups 

(communities). Thus, peer-to-peer communities are a natural extension for arranging 

distributed peer-to-peer systems. Like their social network counterpart, communities also 

enhance the capabilities of each member. 
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1.2 Statement of the Problem 

The recent popularity of peer-to-peer systems has fueled numerous research 

proposals and commercial ventures to organize peer-to-peer networks, efficiently search 

for files, secure information, and provide new applications. Of these approaches, some 

propose structured peer-to-peer networks, where there is a close coupling between the 

topology of the network and the location of data. This dissertation focuses entirely on 

unstructured peer-to-peer networks where the reverse is true, i.e. there is no coupling 

between network topology and the location of data. In fact the topology of the network is 

not controlled by any global scheme and is allowed to adapt, grow/shrink dynamically as 

new nodes join or leave the network corresponding to the actions of their users. 

The main challenges that needed to be addressed were: 

1. Distributed discovery and dynamic maintenance of communities 

2. Distributed dissemination of information 

3. Distributed searches of information 

4. Trust management 

An evaluation of our research will demonstrate the feasibility and efficiency of 

our algorithms with the support of peer communities. 

The canonical application that we consider for our algorithms is a digital library 

built out of a collection of peers in which each peer owns a set of books that it is willing 

to share with other peers1. The subjects of the books owned by a peer form its set of 

interests. Peers are implicitly grouped into communities based on the common interests 

                                                 
1 Assume these are non-copyrighted works. 
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they share. Because a peer could own books from a variety of subjects, we can imagine 

that a peer could be a member of multiple communities. 

1.3 Potential Contributions and Limitations 

This dissertation proposes a natural organization of autonomous peers into 

communities that can be uncovered using decentralized techniques. It provides a 

motivation for the study of peer-to-peer communities and illustrates some scenarios to 

define and discover peer communities. Using simulated models of communities, we have 

gained an insight to the architecture of randomly created communities. Our algorithm for 

the discovery of communities allows for the computation of Link Weights, a very 

important value that enables the working of all our subsequent algorithms. Link weights 

help determine the membership of a peer in a community. They are also used to rank 

peers in a community for the purposes of information dissemination and trust. 

Next it presents a novel push-pull communication technique that utilizes 

communities for better information dissemination via a repeatable push-pull gossiping 

protocol. Prior approaches for information dissemination or information retrieval within a 

peer-to-peer network have tried to send out messages through all or selected peers and up 

to a certain depth. Unlike these approaches, our technique involves a distributed 

discovery phase to gather data on peers and identify highly popular peers (called seers) in 

a community. Unlike supernodes or hubs, which are peers that have a lot of links to other 

peers, seers are identified based on their links to peers within a community. It describes 

the distributed discovery algorithm and show that it is a low overhead, simple protocol 

that is also resilient to failures and delays in peers. 
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Thereafter, the push phase of peer-to-peer gossiping multicasts information to the 

seers identified in the distributed discovery phase. Whenever required, a peer can easily 

and quickly retrieve this information from a nearby seer via a pull phase. Our 

experiments show that pushing gossip information to only a small number of nodes 

allows a large percentage of peer members to obtain (pull) the information within just 

two hops. 

Our proposed solution for pruning the search space and content-based searches 

within the peer-to-peer network also takes advantage of interest-based communities of 

peers. Earlier peer-to-peer search techniques, such as flooding, directed flooding, iterative 

deepening (Yang and Garcia-Molina, 2002), and local indices (Yang and Garcia-Molina, 

2002), had a major drawback that information located farther away from a peer can be 

found only at a considerable search expense. We built a community-based search query 

propagation scheme that provides more efficient searching by targeting one or more 

communities, irrespective of the current membership of the searching peer. Our technique 

follows the innate method of searching that human beings use in the analogous social 

network, where queries for unknown items are asked to �those that know.� The 

community-based search technique also allows search operations to be based on content 

rather than just filename searches employed by many existing peer-to-peer search 

techniques. 

Finally, this dissertation proposes an approach for community-based trust 

management in peer-to-peer systems. It presents an optimistic role-based model for trust 

amongst peers and shows that it is scalable, dynamic, revocable, secure and transitive. 

Our proposed solution permits asymmetric trust relationships that can be verified by any 
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peer in the system through a simple, low-cost algorithm. This dissertation also introduces 

a metric known as iComplex that combines a peer�s trust values for each of its roles into a 

single, relative, probabilistic guarantee of trust. At the end, it discusses how our trust 

model allows peers to revoke relationships with malicious peers, and the non-repudiation 

of peer relations.  

In terms of limitations, the techniques that we developed can only be applied to 

specific applications, such as the digital library, where the set of interests is constrained, 

well defined and understood by almost all the peer members. Our proposed algorithms 

would place individual users into peer communities based on the common interests that 

they share with other peers. A generalized peer-to-peer system, where the set of interests 

includes the universe of all possible interests, might not contain a single peer that shares 

common interests with other peers. Therefore no communities would form. 

Some of the other problems that are outside the scope of this dissertation are: 

specifying how static IP addresses can be used as peer identities, providing more than just 

probabilistic guarantees of trust, describing the channel or protocol of communication 

used by peers, defining the format for the interests of a peer, obtaining the interests from 

a peer, and fragmentation of the network after targeted denial-of-service attacks on seers. 

1.4 Organization 

This dissertation is organized as follows: 

Chapter Two surveys literature related to the area. It describes related 

applications, such as existing peer-to-peer applications; related systems, such as complex, 
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self-organizing systems; and related techniques in information dissemination, distributed 

search and decentralized trust models. 

Chapter Three discusses our modeling of a peer-to-peer network. The chapter 

introduces and defines some important terms, including Link Weights, which are 

associated with modeling peers. Next, it presents our method of forming peer-to-peer 

networks for use in our experiments. 

Chapter Four presents our Attribute Escalation algorithm to aid peer community 

formation and subsequent discovery. Our experiments reveal that Attribute Escalation 

stabilizes after just one round of communication.  

Chapter Five contains our technique for disseminating information through peer 

communities using our novel push-pull communication method. The chapter also 

describes the Distributed Discovery algorithm which is executed before gossiping can 

disseminate information amongst community members. 

Chapter Six provides a discussion on our community-based search technique. It 

describes the experiments used to evaluate our method with existing peer-to-peer search 

algorithms. These experiments illustrate that community-based search results in higher 

quality results, usually with lower communication costs. 

Chapter Seven delves into our trust management using peer communities. First, 

the trust model is introduced. Next, the chapter details how the trust model can be 

employed in a distributed system. Finally, the chapter discusses the revocation and non-

repudiation of trust amongst peers in the network. 

Chapter Eight provides our conclusions and recommendations for future 

directions. 



   

 

CHAPTER 2 

BACKGROUND LITERATURE 

2.1 Related Applications 

This section describes existing groupware, collaborative and peer-to-peer 

applications that are related or appear related to our work with peer communities. 

2.1.1 Groupware and Collaborative Applications 

Groupware are computer-based systems that support groups of people engaged in 

a common task (or goal) and provide an interface to a shared environment (Ellis, Gibbs 

and Rein, 1991). Some examples of groupware computer-based systems are message 

systems, group decision support systems, electronic conference rooms, multi-user 

editors, coordination systems, and intelligent agents.  

Usually, groupware is not developed ��from scratch��, but with the help of a 

groupware toolkit. One particular example of a groupware application is Jive Forums 

(Jive Software). This is an open architecture Java based discussion forum application. 

Jive Forums is a flexible and reliable discussion forum software, and can handle the 

heavy traffic of major sites. 

Argo (Gajewska et a., 1994) is another groupware application that allows 

medium-sized groups of users to collaborate remotely from their desktops, in a way that 

approaches as closely as possible the effectiveness of face-to-face meetings. It combines 

high quality multi-party digital video and full-duplex audio with telepointers, shared 

applications, and whiteboards in a uniform and familiar environment. 
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2.1.2 Peer-to-Peer Applications 

PAST (Druschel and Rowstron, 2001) is a large-scale, peer-to-peer archival 

storage utility that provides scalability, availability, security and cooperative resource 

sharing. Files are immutable and can be shared at the discretion of their owner. PAST is 

built on top of Pastry (Rowstron and Druschel, 2001). 

Another example of a peer-to-peer storage system is OceanStore (Kubiatowicz et 

al., 2000). This utility is a global persistent data store designed to scale to a large number 

of users. It provides a consistent, highly available, and durable storage utility on top of 

an infrastructure comprised of untrusted servers. 

P-Grid (Aberer, 2001) is a peer-to-peer system based on a virtual distributed 

search tree. The tree exists in part within each peer and only the cooperation of all peers 

can provide a view of the overall tree. Every participating peer's position is determined 

by its path, that is, the binary bit string representing the subset of the tree's overall 

information that the peer is responsible for. 

KaZaA is a peer-to-peer file sharing system that allows users to search and 

download files. It gives clients more power by transforming them into �supernodes� that 

can broker search requests of weaker clients. 

On the similar lines, Farsite (Bolosky et al., 2000) is a serverless, distributed file 

system that does not assume mutual trust among the client computers on which it runs; 

and Publius (Waldman, Rubin and Cranor, 2000) is a Web publishing system that is 

highly resistant to censorship and provides publishers with a high degree of anonymity.  

Some other peer-to-peer projects like (Stoica et al., 2001) aims to build scalable, 

robust distributed systems using peer-to-peer ideas. Their work is mainly based on the 
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Chord distributed hash lookup primitive. There have even been attempts such as Anthill 

(Babaoglu, Meling and Montresor, 2002), which is a framework aimed at supporting the 

design, development and analysis of peer-to-peer protocols and algorithms.  

Also noteworthy is Kademlia (Maymounkov and Mazi`eres, 2002), a novel 

routing algorithm for peer-to-peer networks based on the XOR metric. The Kademlia 

project is a research effort to implement a full-featured peer-to-peer system based on the 

XOR metric routing. 

2.2 Related Systems 

We consider peer-to-peer networks and complex systems as being closely related. 

Complex systems have been defined by (Flake, 2000) as �a collection of many simple 

nonlinear units that operate in parallel and interact locally with each other so as to 

produce emergent behavior.� Patterns in several complex systems have been found to be 

self-organizing (Axelrod and Cohen, 2000), often because of the autonomous creation of 

links by participating nodes (with some influence of a partial system view). Discussed 

below are some noteworthy techniques and properties of complex, self-organizing 

systems. 

2.2.1 Link Structure Analysis 

A considerable amount of research has focused on the analysis of link structure in 

collections of objects. Through these analyses, researchers had hoped to discover a 

process that could be implemented to effectively identify and discover specific patterns 

in the collection. Early attempts to analyze the collective properties of interacting agents 

have been found in social networks (Scott, 1991), where link structures like cliques, 
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centroids and diameters were studied. The field of citation analysis (Garfield, 1979) and 

bibliometrics (White and McCain, 1989) seek to identify patterns in collections of 

literature documents by using citation links. Stated below is one such notable definition 

of web communities that uses an analysis of the link structure of web pages to effectively 

identify communities.  

�We define a community to be a set of web pages that link (in either direction) to 

more web pages in the community than to pages outside of the community.� (Flake, 

Lawrence and Giles, 2000) 

At first glance, the above definition seems just what is needed to identify peer-to-

peer communities. However a closer look will indicate that if peers are placed in peer-to-

peer communities based entirely on link analysis, we will not accomplish our goal of 

allowing peers to simultaneously be members of more than one peer-to-peer community. 

A particularly remarkable solution was proposed by (Kleinberg, 1998) to 

discover patterns by analyzing links. It offers an approach called HITS that is related to 

spectral graph partitioning and methods used by the Google search engine (Page, 1997). 

Their recursive definition of hub and authority web pages work to rank results by a 

measure of importance and usefulness, thereby identifying key web sites related to some 

community and also the related websites that might be members of the same community 

(Gibson, Kleinberg and Raghavan, 1998). However their approach depends on the link 

topology; and therefore, it cannot effectively assist in the discovery of communities that 

are ring-based without any dominating members. 

Complementary to the HITS algorithm, (Flake, Lawrence and Giles, 2000) 

requires a �seed� web site as the starting point to begin a focused crawl in order to 



   13 

 

identify a community. Members of the community are discovered by using the maximum 

flow / minimum cut framework using the two sets called source and sink, initially 

composed of well-known web sites. When mapped to the peer-to-peer domain, this link-

based technique has the drawback of not truthfully modeling real world peer-to-peer 

communities where peers can simultaneously be members of more than one community. 

Perhaps a combination of graph theory and link analysis is needed to correctly 

identify patterns within collections of peers. For instance, if the links of a peer were 

classified, as outgoing and incoming links, and if there existed cycles in the directed 

graph formed by the peers and their links, we would have successfully identified peer-to-

peer communities. These cycles could be discovered in a depth-first manner by 

exhaustively traversing the outgoing links to check if they visit a peer twice. 

Except for the expected scalability problem in the above technique, it seemed to 

guarantee to uncover any pattern that might exist. Yet the procedure would fail for some 

of the most commonly occurring patterns: the star, where many peers are huddled around 

a single peer like in a client-server configuration, or the tree, where no cycles would 

exist. Even in a domain that is purely peer-to-peer, one cannot avoid the fact that often 

many peers will use a small subset of peers or even a single peer as a source of 

information or for collaborations. 

In trying to empower peers to discover their community membership, we had to 

find an efficient solution that would be practical, unlike the NP-complete solutions 

offered by graph partitioning (Garey and Johnson, 1990). 
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2.2.2 Small-World Networks 

Previously, self-organizing systems had been described by Erdös and Rényi 

(1961) who modeled them as random networks and studied their properties. In random 

networks, the topology of the network is the result of links between randomly selected 

nodes. Watts and Strogatz (1956) also studied the properties of large regularly connected 

graphs of nodes that contain a few random long-distance edges between nodes. They 

modeled this structure and demonstrated that the path-length between any two nodes of 

the graph is in fact surprisingly small. As a result, they called these semi-random systems 

small-world networks. These networks have low characteristic path lengths (as in 

random networks) and high clustering coefficients (as in regular networks). 

Subsequently, a number of papers have acknowledged the existence of small-world 

networks in the Internet topology (Bu and Towsley, 2002; and Albert, Jeong and 

Barabási, 1999); the power grid of the western United States; various social networks 

(Watts and Strogatz, 1956), such as the collaboration graph of film actors; Erdös 

numbered research scientists; and even in the neural network of the worm 

Caenorhabditis elegans. Further, Granovetter (1973) discusses the existence and shows 

the importance of weak social ties (links) between highly connected clusters of friends. 

The similarity of peer-to-peer networks to social networks and the fact that 

humans direct peer links led us to believe that peer-to-peer networks would also exhibit 

small-world behavior. In fact, this has already been observed in existing peer-to-peer 

networks, such as Gnutella. 
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2.2.3 Scale-Free Networks 

More recently, Strogatz (2001) and Amaral et al. (2000) observed that many 

networks demonstrated topological properties that were different from the predictions 

made by random network theory. In particular, the existence of some very well 

connected �hub� nodes dramatically influenced the behavior of these networks during 

random node failures and spreading of information. These networks are characterized by 

the uneven distribution of connections (links) in the nodes of the network. 

Specifically in these networks, called �scale-free networks,� the degree 

distribution of participating nodes was found to decay as a power law, very much unlike 

a random network that exhibits a Poisson distribution of node degrees. Hence, scale-free 

networks have sometimes been described as power-law networks. 

It has been shown that various networks, such as the collaboration graphs of 

actors and scientists, were developed due the feature of preferential attachment (Jeong, 

Néda and Barabási, 2003; Newman, 2001; and Barabási and Albert, 1999). This feature 

describes the probability of a node acquiring new links as an increasing function of the 

links that it currently has. 

In order to correctly model the peer-to-peer network, it is important that we also 

incorporate the scale-free property into the network topology. 

2.2.4 Multicast Groups and Communities in Ad Hoc Networks 

Multicast groups and ad hoc communities may seem similar to our work. A 

literature-survey with special emphasis on the differences between our approaches is 

provided below. 
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Caronni et al. (1998) support dynamic groups of arbitrary size where members 

can join and leave at random. Groups are created by a Group Manager who is responsible 

for receiving and processing �join� and �leave� requests from participating nodes. 

Additionally, group parameters are published using a directory service. In the distributed 

flat key management scheme, certain nodes in the group perform a regular heartbeat 

communication by sending out some messages using a multicast, broadcast, or anycast 

channel. 

Keoh and Lupu (2003) call an ad hoc network of devices a community. This 

differs greatly from our definition of communities as interest-based groups of peers. The 

approach relies on a community specification, called doctrine that is created prior to the 

establishment of the community. The doctrine specifies various policies, roles and 

permissions that users need to abide by in order to participate in activities of the 

community. 

Hong and Gerla (2002) introduce a dynamic group discovery and formation 

technique that aggregates ad hoc nodes that have movement affinity. Like in our work, 

these groups are dynamically formed, split or broken down and group members may join 

or leave at random. Their system requires the execution of Group Leader Election 

algorithms that rely on periodic broadcast of messages. 

Meissner and Musunoori (2003) propose a group integrity management scheme 

and describe scenarios that seem similar to the goals of our research. Their concept of 

groups involves WiFi-enabled gadgets aggregated based on application-level or user-

specified reasons, such as a �music� group or a �books� group. Members of a group 
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communicate using either unicast or multicast and each group requires a group manager 

that administers join or leave requests. 

In contrast to these systems, peer communities implicitly form due to declared 

interest attributes of peers, they require no manager, peers join and leave a group 

implicitly, but can efficiently discovery their community memberships, and inter-group 

communication uses a push-pull technique. 

2.3 Related Techniques 

Although peer-to-peer systems have only recently become popular, distributed 

algorithms, such as gossiping, have been around for more than a decade. This section 

provides an overview of some existing algorithms and techniques that have similar goals 

as our peer-to-peer techniques for information dissemination, search and trust. 

2.3.1 Information Dissemination in Distributed Systems 

Listed below are some well-known techniques that are being used for propagating 

information in distributed systems. Some of these algorithms are also applicable for 

searching peer-to-peer networks. 

a. Flooding and Swamping  

The flooding algorithm allows for directed communication amongst an a priori fixed 

set of neighboring machines (Harchol-Balter, Leighton and Lewin, 1999). Internet 

routers use this method today (Moy, 1998]. The swamping algorithm is similar to the 

flooding algorithm, except that, it facilitates communication between all the 

neighbors of a particular machine, not just its initial neighbors (Harchol-Balter, 

Leighton and Lewin, 1999). 
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b. Random pointer jump 

The disadvantage of the swamping algorithm is that it is highly communication 

intensive. Instead of communicating with all its neighboring machines, if only one 

randomly chosen neighbor was selected during each round, it would reduce the 

communication complexity. However, this method can only be applied to strongly 

connected networks, where there is a path between every pair of machines (Harchol-

Balter, Leighton and Lewin, 1999). 

c. Gossiping and Rumor Spreading 

The class of gossip algorithms has long been used in distributed systems (Agrawal, 

Abbadi, Steinke, 1997; Demers et al., 1987; Hayden and Birman, 1998; Oppen and 

Dalal, 1983; Pelc, 1996; and Renesse, Minsky and Hayden, 1998). Some examples of 

how it is being used include efforts to maintain consistency in a distributed replicated 

database (Agrawal, Abbadi, Steinke, 1997; and Demers et al., 1987), or to gather 

information about failures in a network of machines (Renesse, Minsky and Hayden, 

1998). Randomized rumor spreading (Karp et al., 2000) is a similar epidemic 

algorithm that can be used for the lazy transmission of updates to distributed copies 

of a database. The algorithms use a simple randomized communication mechanism to 

ensure robustness. However, most gossiping algorithms assume knowledge of all the 

machines that exist on the network, and that information from one or more of the 

machines needs to be broadcast to the others. 

d. Name-Dropper 

The Name-Dropper (Harchol-Balter, Leighton and Lewin, 1999) algorithm is similar 

to the Random Pointer Jump algorithm, but it has a lower communication cost and 
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also requires fewer rounds to terminate. The Name-Dropper algorithm has been 

implemented at MIT to solve a resource discovery problem. Currently, it is also 

being used by Akamai Technologies. In contrast to gossiping and rumor spreading, 

the Name-Dropper algorithm attempts to broadcast in networks where the machines 

might not be aware of each other�s existence. Their results show that allowing 

machines to learn about the existence of other machines during the gossip process 

will make gossiping efficient even when starting from a weakly connected graph. 

2.3.2 Peer-to-Peer Searching Techniques 

In the client-server model, a single server or a group of servers that has access to 

a data repository execute the search algorithms on behalf of a requesting client machine. 

The absence of servers in the peer-to-peer model makes searching for information in 

these networks a potentially costly operation. Peer-to-peer searching involves 

cooperatively passing a query message until a peer that published the desired information 

is found. Current peer-to-peer applications employ search algorithms that attempt to 

bring down the cost of searching in terms of number of hops/messages while still 

covering the largest possible number of peers in the system.  

Search techniques in unstructured peer-to-peer systems have loose guarantees. 

Existing techniques include the naïve flooding; propagating search queries to all 

neighboring peers who in turn forward the query until the query has been forward a pre-

defined number of times (Gnutella); forwarding a search query with a pre-defined hop 

limit to only one neighboring peer at a time (Clarke et al., 2002); employing highly 

connected peers or �superpeers� to propagate or broker the search query (Adamic et al., 
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2001; and KaZaA); peer gossiping to maintain accurate local copies of membership 

directories and summaries of shared content (Cuenca-Acuna et al., 2003); and so on. 

Often structured approaches employ Distributed Hash Tables (DHT) to organize 

peer-to-peer networks. DHT based systems require participating peers to store either 

entire files or file locations when the identity of the peer corresponds to the hash of the 

filename published by another peer. Therefore, DHT based systems can be used to 

perform efficient filename searches because they guarantee the location of the data if it 

exists within the system at the cost of a data insertion overhead (i.e. the process of 

updating tables at the peer whose identity matches the hash of the filename). Example 

algorithms include (Stoica et al., 2001), which uses a distributed hash lookup primitive to 

build a scalable and robust peer-to-peer system; and (Rowstron and Druschel, 2001), 

which is a large-scale, peer-to-peer archival storage utility that provides scalability, 

availability, security and cooperative resource sharing. 

Additionally, (Yang and Garcia-Molina, 2002) has proposed techniques that 

reduce communication and increase the probability of arriving at a solution to the search 

query. Some examples of these proposed techniques are iterative deepening, which 

iteratively increases the depth unto which to flood; directed BFS, which selects a subset 

of immediate neighbors heuristically and entrusts them with further propagation of the 

search query using directed BFS again; and local indices, which require each peer to 

maintain a local index of the contents of peers that exist within a pre-determined range. 
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2.3.3 Trust Models 

Perhaps one of the earliest formalizations of trust in computing systems was done 

by Marsh (1994). He attempted to integrate the various facets of trust from the 

disciplines of economics, psychology, philosophy and sociology. Rahman and Hailes 

(2000) proposed a trust model based on the work done by Marsh but specifically for 

online virtual communities where every agent maintained a large data structure 

representing a version of global knowledge about the entire network. Gil and Ratnakar 

(2002) describe a feedback mechanism that assigns credibility and reliability values to 

sources based on averages of feedback received from individual users. 

More along the lines of trust and social networks, Golbeck, Hendler and Parsia 

(2003) presented an approach to integrate social network analysis and the semantic web. 

Yu and Singh (2000) introduced a referral graph comprising agents as weighted nodes 

and referrals as weighted edges between participating agents. The graph topology can be 

changed over time, for instance after bad experiences agents can change their list of 

neighbors and also propagate information about the "bad" agent within the network. 

Yolum and Singh (2003) propose a similar approach that enables the study of the 

emergence of authorities in self-organizing referral networks. Pujol et al. (2002) 

associate reputation of an agent with its degree in a social network graph. Similar to 

PageRank in Google, an agent gets a high reputation if it is pointed to by other agents 

that also have high reputation. Aberer and Despotovic (2001) analyze earlier transactions 

of agents and derive from that the reputation of an agent. Reputation provides a value 

that indicates the probability that the agent will cheat. They also presented a design for 

trust management using their proprietary decentralized storage method. 
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2.4 Summary and Conclusions 

This chapter presented a few existing groupware, collaborative and peer-to-peer 

applications that are related to the community-based organization of peers described in 

this dissertation. Next it discussed some of the characteristics of complex, self-

organizing systems which are related to our peer-to-peer network model, specifically the 

properties of small-world networks and scale-free networks. Finally, the chapter ended 

with an overview of some algorithms and techniques that have the related goals of 

distributed information dissemination, distributed searching and trust modeling. 

Our work introduces a novel community-based organization of peer-to-peer 

networks that retains the flexibility of unstructured peer-to-peer networks and assists in 

searching, gossiping and trust. Our gossiping algorithm employs a simple push-pull 

operation that exploits community-based link structures. Our technique for searching 

also makes use of peer communities to prune the search space, by following the innate 

method of searching that humans use in the analogous social network, where queries for 

unknown items are asked to �those that know.� Peer-to-peer systems used for 

information exchange have either protected peers� anonymity, or required transacting 

peers to trust each other implicitly. Both these approaches are vulnerable to attacks by 

malicious peers who could abuse the peer-to-peer system to spread viruses, incorrect, or 

damaging information. Finally, we associate trust values with Link Weights instead of 

links. 



   

 

CHAPTER 3 

MODELING A PEER-TO-PEER NETWORK 

3.1 Modeling Peers 

The formation and discovery of peer communities depend significantly on how 

peers declare and use their common �interests�. In this section, attributes are first 

described as a method of declaring interests. A thorough treatment of the subject of peer 

links is then provided later in the section. 

3.1.1 Interest Attributes 

In our model, interests are represented by attributes, which are used to determine 

the peer communities in which a particular peer would participate. Attributes can be 

either explicitly provided by a peer or implicitly discovered from past queries. For 

example, a housewife can express that she is interested in French wines and house 

decoration. Such expressions are personal declarations. Also, her repeated web search 

queries to find �K-12 education in Arizona� can be used to provide implicit information 

about her interests. For the implicit discovery of interest attributes, we assume the 

presence of a semantic analyzer that can access browser history, sent-mail and other files 

available on a peer�s storage to intelligently deduce the list of tasks for which the peer is 

being regularly used. This list forms the list of implicitly derived interests. Examples of 

semantic analyzers that could be incorporated into our system with some minor changes 

are (Hayes et al., 1986; and Matrouf et al., 1990). Our system design, however, does not 

depend on the existence of a semantic analyzer. Therefore, the list of interests can even 

be entirely obtained from the owner(s) in an explicit manner (possibly through a number 
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of iterations). There are of course privacy and security concerns in using such 

information, so we divide interests into two classes � personal and claimed. 

The full set of attributes for a peer is called personal attributes. However, for 

privacy and/or security reasons, all these attributes may not be used to determine 

community membership. A client may also not want to reveal some of her personal 

attributes because she might not consider them relevant amongst the peers that she 

knows. Hence, a peer explicitly makes only a subset of these attributes public, which are 

called claimed attributes.  

 

In Fig. 1, I is the universe of all attributes; P is the set of personal attributes; and 

C is the set of claimed attributes. Below, we formally define a peer-to-peer community 

and its signature based on the attributes of each peer. 

Definition 1 

Peer-to-Peer Community 

The non-empty set N of nodes is a peer-to-peer community iff N has a non-null 

signature. 

 

I 

P 
C 

 

 
Figure 1. Venn diagram of interest attribute sets for a peer 
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Definition 2 

Signature of a Set of Peers 

Let i be a node and Ci be a set that contains attributes claimed by i. Consider a 

non-empty set N of nodes. Then the set resulting from the intersection of Ck, for all k ∈  N 

is called a signature of the set N. 

With these definitions, given any collection of peers, we would be able to tell 

whether the collection is a peer-to-peer community or not. 

3.1.2 Peer Links 

We observe in projects like HITS (Kleinberg, 1998) and Web Communities 

(Flake, Lawrence and Giles, 2000) the concept of self-organized communities that form 

implicitly based on hypertext links between web pages. The human creators of the web 

page explicitly place these links typically in order to point towards web pages with 

similar content. This is one of the factors that Internet search engines have exploited to 

enhance their search operation.  

We draw an analogy from the above research to understand the behavior of peer-

to-peer systems. We find that peers also regularly link to other peers, in the form of 

relationships (being present in their address book), or direct connections (being on the 

same network), when their human owners share something in common. We assume that 

these links are bi-directional communication channels that can be established on an as-

needed basis. In a social network, this is similar to getting in touch with people you 

know when you need something. We refer to these end-to-end overlay communication 

channels as peer links. 
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3.1.2.1 The Need for Peer Links. Links are not necessary to form and manage peer-to-

peer communities. However, they are needed to feasibly run low-cost algorithms that are 

used for formation and discovery of communities, as it is conceptually and 

algorithmically simpler to use the notion of a set of neighbors, which are directly (1-hop) 

linked peers, when communicating with other peers. 

When node X is born, it needs to have one or more logical neighbors. If it has 

three neighbors, A, B, and C, then we say that it has three links, X!A, X!B, and X!C. 

Unlike overlay networks used by Distributed Hash Table (DHT) based peer-to-peer 

systems, our link based network is not contingent to node names, but to user selected 

neighbors. Like in social networks, the more links a node acquires the more successful it 

will be in receiving information and searching the peer-to-peer network. It is the 

responsibility of each peer to acquire as many neighbors as possible. 

First, let us explain a case where links are essential. Suppose a node, belonging to 

domain abc.com claims the attribute �baseball�. This node is essentially isolated, unless 

it a priori knows about the other members of the baseball community or the other 

members of the abc.com community. There is a need for a �seed� to start the community 

formation and information search needs. 

3.1.2.2 Creating Peer Links. Flooding and querying a central server are two solutions to 

the isolation problems; however, the first is expensive and the second violates the self-

configuring tenet of the peer-to-peer model.  

A new node X has the following options that solve the isolation problem: 

1. Connect to a special bootstrapping node present within each network domain 
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2. Connect to a peer known to X � a friend / colleague. 

For a novice/new node, the first option may be the most appropriate. As X ages, it 

finds other nodes and adds these links to improve search speed and information access. 

The linkages are bi-directional and similar to friendships in real life, or to http links in 

the Web. They are directed by humans. 

3.1.3 Link Weights 

Peer links are used to compute Link Weights at each peer in the network. Below, 

a definition for Link Weights is provided followed by an illustrative example in Fig. 2.  

Definition 3 

Link Weight 

This is the weight calculated for each claimed attribute of a peer V based on the 

number of links from V that can reach, after at most one indirection, other peers that 

claim the same attribute. 

The constraint of at most one indirection is necessary to restrict the maximum 

depth up to which peers will be examined since more than two levels deep resulted in an 

unacceptably high number of communication messages. See section 4.4.3 for the average 

number of peers that are reachable from a peer.  

The Link Weight values of a peer can change over time because of the value�s 

tight coupling with peer links. All peers are not equal in terms of the number of their 

neighbors. Older peers, i.e. peers that have been part of the network longer than others, 

are likely to have higher Link Weights because they have more time to accumulate more 

neighbors. This is observed in our experiments described in section 5.3.4. In addition to 
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favoring older peers, higher Link Weights are observed in peers that have popular/ 

interesting content or useful resources. As peers in the network search for and discover 

these content or resources at the peer that owns them, their human users might create a 

link to the content/resource owner to avoid subsequent searching. Finally, since peer 

links are directed by humans, social aspects, such as the popularity of the peer�s owner, 

will contribute to the increase in Link Weight values at a peer. 

Link Weight values can conversely be reduced by the removal of links through a 

process we call revocation (see section 7.6.1). The removal of links might be a result of 

the waning interest in content or resources at a peer, malicious behavior of a peer during 

transactions, or simply due to social aspects, such as death, separation, and so on, of the 

peer owner. Due to the dynamic nature of peer links, Link Weight values are calculated 

at regular intervals decided autonomously by each peer. 
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a. Comparing with 1-hop / 2-hop neighbors b. Link Weights for each attribute 

Figure 2. Peer V compares its claimed attributes with neighboring peers and then 

calculates Link Weight values 
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As mentioned earlier, this value is very important to help determine the 

membership of a peer in a community and rank peers in a community for the purposes of 

information dissemination and trust. Although later chapters explain how this value is 

used in our algorithms, a summary of the importance of Link Weights is provided in the 

following paragraph. 

After the community formation algorithm described in chapter 4, each peer 

calculates its Link Weights by analyzing the claimed attribute sets that it receives from 

neighboring peers. The subsequent community discovery algorithm uses the definition of 

community membership, which relies on Link Weight values. A critical part of our 

information dissemination algorithm is the selection of special peers to carry out push-

pull gossiping. These peers are selected by virtue of having high Link Weights. During 

community-based search query propagation, higher Link Weights of peers responding to 

the query indicate that the peers are more likely to have the requested resource. Our trust 

model uses Link Weights as an indication of role-based trust. Finally the single iComplex 

trust value described in chapter 7 is calculated using Link Weights. 

3.2 Peer-to-Peer Network Formation 

In this section, two approaches are explained for generating a realistic peer-to-

peer network topology that we used to simulate our algorithms. 

3.2.1 Using the Internet Topology 

Due to the manual nature of setting up links, we believed that the resulting 

network topology would be similar to that of the Internet. In fact, the pre-cursor to the 

Internet (Arpanet) was one of the first peer-to-peer networks, with its ability to connect 
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computers as peers having equal rights in sending and receiving packets. We therefore 

wrote a spider program that crawled a subset of the Internet (a pre-specified domain, 

such as �asu.edu�) and created a topological map that could be used to calculate various 

parameters such as clustering coefficient and power-law exponents. The spider program 

started at a user-specified website, requested its HTML content and parsed the HTML 

code to extract all the linked websites. It recorded the websites that lay within a pre-

specified domain, such as �asu.edu� and discarded the rest. Thereafter, the spider 

recursively visited each website from its recorded list repeating the same steps. By 

programming the spider to travel the Internet domain using an Eulerian path, we could 

create a map of the web topology where each node was a website and edges represented 

a link from one site to another.  

Apart from a few changes, like converting the graph from a directed graph to an 

undirected graph, the web topology graph that we generated closely resembled a peer-to-

peer network. Websites are analogous to peers; and http links are equivalent to peer 

links. The other reason for the close resemblance was the similarity between website 

content and a peer�s interest attributes.  

Fig. 3 demonstrates the power-law distribution of the frequency (logarithmic X-

axis) Vs the degree (logarithmic Y-axis) in the two Internet topology maps. However, 

our calculations for small-world behavior revealed low characteristic path lengths (2.46 

and 2.32) and low clustering coefficients (0.28 and 0.32) for asu.edu and umich.edu, 

respectively. We attribute this phenomenon to the popular use of increasingly efficient 

search engines on the Internet. While a few years ago, a website owner had to place http 

links to frequently visited websites on her website so that they could be easily accessible, 
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contemporary search engines efficiently locate websites so that many website owners do 

not even have to link to the websites of their colleagues and friends any more. The 

resulting topology graph therefore showed fewer regular links, and calculations for the 

clustering coefficient hence revealed low values. 
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Figure 3. Power-law distribution of the frequency Vs degree plot for the web 

topology graphs 
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3.2.2 Creating Our Own Peer-to-Peer Network 

A peer-to-peer network comprising of peers linking to known peers is analogous 

to social networks, and therefore should have a high clustering coefficient to represent 

the interconnected social links amongst circles of friends. We needed to provide a 

mechanism to guarantee that our peer-to-peer network topology exhibits the properties of 

a small-world network and also shows a power-law distribution for frequency versus 

degree. 

Our next approach involved enforcing certain rules (similar to preferential 

attachment) on new peers that wanted to join the peer-to-peer system. We were inspired 

by the work of Steyvers and Tenenbaum on semantic networks, and extended the domain 

of their model to a peer-to-peer network that involved peers and links. 

 

Fig. 4 (a) indicates what happens if Random Attachment is used to create the 

peer-to-peer network, i.e. new nodes join the network by linking to a randomly picked 

 

a. Random Attachment b. Enforced rules 

Figure 4. Topology of networks grown up to 100 nodes 
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existing node. The resulting network resembles a tree instead of a graph. Fig. 4 (b) shows 

a peer-to-peer network that has been formed using our enforced rules. The rule-based 

network is closer to a realistic topology. A new peer, X, therefore has to follow a two-

step procedure (described below) in order to join a peer-to-peer system. 

}X known to peersofset{Let =N (See section 3.1.2), the symbol →℘  means 

�connects (links) to�, with probability℘, and ∝℘A degree of node A, which is denoted 

as kA. The two-step procedure is: 

NAAAX ∈ →
℘

,  Step (1) , X selects a node A and connects to it 

BXAMAmB →′∈′=∀ 1,  Step (2) , X selects d nodes from M�A to link to 

where, 
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MiiffkMi

dMMM

kMM

∈∝℘′∈

=′⊆′

==

 yprobabilitwith 

defined)(globally thatsuch
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Fig. 5 (a) shows the clustering coefficient (CC) and the characteristic path length 

(PL) for various network sizes generated with an initial seed of 2 nodes. The suffixes P 

and R indicate peer-to-peer and random networks respectively. Fig. 5 (b) shows the 

power-law distribution in a frequency (logarithmic X-axis) Vs degree (logarithmic Y-

axis) plot of our rules mechanism compared with the well-known �Barabasi� technique. 

The network size was 1000 nodes grown from 2 seed nodes. 
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3.3 Summary 

Formation and discovery of peer communities are significantly dependent on how 

peers declare and use their common �interests�. This chapter begins by defining 

attributes as a method of declaring interests, and then it describes a bidirectional, end-to-
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Figure 5. Properties of the resulting peer-to-peer network created by enforcing rules
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end communication channel called peer links.  More importantly, this chapter provides a 

set of rules for peers to join a peer-to-peer network such that the network will always 

exhibit certain properties like small world behavior and power-law distribution. We use 

these rules to build a peer-to-peer network simulator so that our simulations mirror real 

peers as closely as possible. 



   

 

CHAPTER 4 

FORMATION AND DISCOVERY OF PEER COMMUNITIES 

4.1 Motivation 

Psychologists have long shown that people have an affiliation motive (Murray, 

1938) and a need for information about the world around us (Festinger, 1950). These are 

some of the instincts that have driven the formation of human groups. This tradition of 

group forming is not alien to computer science and we witness examples of it in Usenet 

groups, web communities (Flake, Lawrence and Giles, 2000), Yahoo Groups, chat rooms 

and so on. 

Almost all present-day groups require some central control or a central authority 

through which advertisements can be made. In contrast to this, peer-to-peer systems are 

defined to be completely de-centralized and can also be dynamic. The popularity of 

schemes to form communities and associations on the web leads to the use of the peer-to-

peer system structure for realization of underlying community structures. Thus peer-to-

peer communities are not only a natural extension for arranging distributed systems, but 

also to enhance the capabilities of each member. 

To enable regular searching as well as community-based searching, we must be 

able to efficiently discover communities, that is, we need searches for community 

members. This is somewhat complicated by the fact that communities are implicit, self-

organizing, dynamic and constantly changing�forming, or breaking down due to 

changes in the peers. 
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This chapter is targeted to discovery of communities on the fly to enable efficient 

intra-community information dissemination as well as inter-community searching. To 

this end we have studied the community formation characteristics using simulations of 

large communities and found characteristics that can be exploited to perform discovery 

and searching. We show that this discovery does not require extensive computation or 

communication on the part of a peer. 

Note that searching and information dissemination is not the focus of this chapter, 

they are the next step after community discovery algorithms are implemented. 

4.2 Challenges for Formation and Discovery 

In traditional centralized approaches, a server would be charged with maintaining 

a record of the interest attributes of each of its clients. New clients would merely register 

their interests at the server, which would periodically execute a matching algorithm to 

group peers that share common interests to form communities. This list of communities 

could be easily obtained from the server at any time. In this way, communities would be 

formed and clients would know their community membership in deterministic time. 

Existing examples of such systems are matchmaking servers and dating websites. As a 

bonus of a centralized approach, clients could also ask the server for a list of all the 

available communities without incurring any extra computational cost for server-side 

processing. Alternatively, a server would act as a central directory that lists all the 

available communities. New clients would then have to browse or search the directory 

for communities to join; or they could form a new community. A few other examples of 

these systems can be found in Internet chat sites (Yahoo Chat; MSN Chat; and ICQ). 
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In a distributed environment, such as a peer-to-peer network that lacks a central 

authority, this simple formation and discovery problem becomes much more complex. In 

order to compensate for the server, the cost of communication will be higher. Peers will 

need to exchange their interest attributes with each other for the purpose of forming 

communities and deriving their community membership. In addition, it is unlikely that 

any bonus information that was previously available for free due to the centralized 

approach will be similarly obtained without executing another round of communication. 

We propose a community formation and discovery algorithm that works without 

any central authority and optimizes the cost of communication. Our algorithms are 

autonomous procedures that are executed asynchronously by each peer. Through a 

simple exchange of interest attributes, we demonstrate how communities can be formed. 

Further, without any additional communication, we show how peers can also discover 

exactly to which communities they belong. The algorithm for discovering communities 

in which a peer is not a member is left for chapter 6. 

4.3 Forming Communities 

The community formation algorithm assists in the establishment of community 

relationships amongst peers that share common interest attributes. 

Normally, a network of peers can exchange or advertise their interest attributes 

with their neighbors in order to find peers with whom community relationships can be 

formed. There are two mechanisms here: an active approach and a passive approach. In 

the active approach, a peer actively polls peers in its neighborhood2 for their claimed 

                                                 
2 The neighborhood of a peer includes 1-hop and 2-hop neighbors. 
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interest attributes (receive phase) while simultaneously sending its own claimed 

attributes to them (send phase). On the other hand, if a passive approach is adopted, a 

peer merely advertises its claimed interest attributes on its website and relies on the 

active approaches of other peers for the exchange. The number of messages required 

during both send and receive phases for the active approach is О(n2), while for the 

passive approach, the number of messages during the send phase is Ø and during the 

receive phase it is ≤ О(n2). We use both these approaches in our community formation 

algorithm. The active approach occurs as an initial, periodically (daily, or weekly, etc.) 

repeatable exchange; and the passive approach exists continually between active 

exchanges. Over time the communities formed will become out dated as peers change 

their interest attributes. Therefore, we propose that the formation algorithm be repeated 

periodically. In between these repetitions, we propose that a peer advertises its interest 

attributes using its website, shared network drive, or a web service. Due to the 

asynchronous nature of our algorithm, in a large network of peers there will always be 

some peers in an active mode, at any given time, which can take advantage of these 

advertisements. 

The active exchange of interest attributes is not required in order to form 

communities. In fact, if all peers only operated in passive mode and tried to form 

communities based on their claimed attributes, we could significantly reduce the cost of 

communication. However, it is possible that a peer-to-peer community with signature S 

might exist. As a result, a peer that has S ⊆  personal attribute set and S ⊄  claimed 

attribute set, will not be able to join this community and avail of the benefits until it 

claims all the attributes of set S. 
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Peers, therefore, need to expose (escalate from the personal list to the claimed 

list) as many attributes as possible to join the maximum number communities. This 

process is called attribute escalation, and can only be achieved by establishing active 

communication with other peers to obtain their claimed attribute sets. When no more 

attributes are being �escalated� by the peers, we say that the communication has 

achieved its goal and the collection of peers is stable.  

Two peers that are linked (shown by arrow) are illustrated in Fig. 6. Note the 

change in the claimed attributes of Peer Q it received claimed attributes from Peer P. 

4.3.1 Attribute Escalation Algorithm 

Provided below is an algorithm for attribute escalations: 

1. Each peer P communicates with all of peers in its neighborhood. The 

communication involves a transmission of the claimed attribute set by P.  

2. Each peer Q receiving the claimed attribute set from its links will find the 

intersection of the set with its own personal attribute set. 

3. If an element is present in the intersection set and absent from the claimed 

attribute set of Q, then it is added to the claimed attribute set of Q.  

The reason that transmission occurs only within the neighborhood is explained in 

section 4.4.3. Further, our simulations have shown that by using only one level of 

indirection, peers could participate in an average of eight communities. Probing to two 

levels of indirection is unnecessary, as it did not increase the average number of 

communities in which a peer could participate. 
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Note that the attribute escalation algorithm automatically escalates attributes from 

the personal set to the claimed set. This process may not be desired in practice and a 

human may be consulted before this escalation is performed. For this dissertation, 

automatic escalation is assumed. 

The above procedure makes a change to each peer and therefore changes the 

communities identified. Since these changes might occur frequently with peers being 
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Figure 6. Procedure to escalate attributes (�Technical� in this case) 
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created, destroyed, or modified, we were concerned about the stability of the attribute 

escalation technique. 

4.3.2 Experimental Evaluation 

We conducted simulations to measure how many communication steps our 

algorithm requires to identify all the possible communities. In this simulation, we 

generated a peer-to-peer network using our generation method described in the previous 

section. The network consisted of 10,000 peers. Each peer was randomly assigned a set 

of personal attributes of random size but with at least one element. To simplify the 

process, the attributes were implemented as different letters of the alphabet. Thus we had 

26 possible attributes (A-Z). Next, from the personal attribute set of each, we randomly 

selected some attributes and made these the claimed attributes of that node. 

 

On the average, we found each simulated peer contained 13 personal attributes 

and 6 claimed attributes; and was connected to 66 peers. We found that the average 

number of claimed attributes per peer stabilized after one iteration of the attribute 

0
2
4
6
8

10
12
14

0 1 2

Number of Communication Steps

A
vg

. #
 C

la
im

 A
ttr

ib
ut

es

 

Figure 7. Stabilization of Attribute Escalations 



   43 

 

escalation algorithm (see Fig 7). This means that the number of times peers need to 

communicate before the average number of claimed attributes for all peers becomes 

constant is just once. Further, the computation at each peer is a trivial set algebra. Hence, 

each new arrangement of a collection of peers is expected to stabilize quickly and with 

little overhead. 

4.4 Discovery of Community Membership 

Discovery in the context of peer-to-peer communities usually indicates one of the 

following: discovery of the communities in which the peer is automatically a member, or 

discovery of remote communities that a peer might want to join or use. As indicated at 

the beginning of this chapter, the focus is on the former.  

After the escalation of attributes, a peer has only facilitated the formation of 

communities. It still is not aware of its community memberships. At this stage, a peer 

knows two things about its interest attributes: the list of its claimed attributes, and the 

subset of the claimed attributes that were escalated. A peer can assume to be a member 

of communities whose signatures are equal to the attributes that have been recently 

escalated. This assumption makes sense because the only reason that the attributes were 

escalated was due to communication with a known peer (directly or indirectly known) 

that shares the same interest. However, the attributes of a peer that had already been 

claimed before the escalation process might or might not have been common with other 

known peers. Therefore, the peer cannot assume to be a member of a community that is 

based on these un-escalated claimed attributes. After analyzing the received claimed 

interest attribute sets, a peer will be able to discover two kinds of communities: 
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1. The communities that peers are a part of by virtue of their common claimed 

attributes 

2. The communities in which peers become members by virtue of the claimed 

attributes that were escalated  

The analysis of the claimed attribute sets received allows a peer to compute its 

Link Weights (see section 3.1.3 for definition). As stated earlier, link weights help 

determine the membership of a peer in a community. 

Definition 4 

Peer-to-Peer Community Membership 

A node i, with claimed attribute set Ci, is a member of a peer-to-peer community, 

N, with signature set S if every claimed attribute of the intersection set I = Ci ∩ S has a 

link weight that is greater than the globally predetermined threshold T. 

By including threshold T in the definition of membership, we can have various 

degrees of peer-to-peer communities. For instance, if the threshold is kept very low, then 

a community will be formed even with a small number of peers that share a common 

interest. If instead, it is desired that peer communities only form when there are many 

peers that share a common interest, the threshold can be set to a higher value. Although 

not required to be pre-set, the threshold value would give the network of peers a uniform 

behavior if all peers agreed upon its value. 
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4.4.1 Community Discovery Algorithm 

The procedural pseudo-code for our membership discovery is shown in Table 1.  

Table 1 

Community Discovery Algorithm 

Line Pseudo-Code 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

MEMBERSHIP-DISCOVERY (peer) 

/* executes at each peer simultaneously */ 

  foreach claimed attributes 
    compute link weight 
  end-for 
  foreach subset S of claimed attributes set 
    foreach attribute in S 
      if link weight > T then 
        check next attribute 

      else 
        break-for 
        /* try another subset */ 

    end-for 
    if no break-for was executed 
      peer is member of community with signature S 

  end-for 

4.4.2 Experimental Evaluation 

We measure the effectiveness of our algorithm by the difference in the number of 

peer-to-peer communities, in which a peer discovers membership. 
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We ran simulations on peer networks of two different sizes: one with 1,000 peers: 

and the other with 10,000 peers. The maximum number of personal attributes we allowed 

for each peer was 20, and a peer was explicitly placed into only one group, as described 

earlier. For both simulations, we set the link threshold to 40%. 

 

 

The graphs shown in Fig. 8 and 9 are the results of our simulations. They 

demonstrate the performance of using the claimed attribute set and the link threshold for 
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Figure 8. Percentage of communities discovered (average over all peers) 



   47 

 

the discovery of peer-to-peer communities. The graph in Fig. 8 shows the average 

number of communities discovered by all peers before and after executing the 

Community Discovery algorithm. Fig. 8 illustrates that the majority of peers have 

discovered communities, other than the ones, in which they were explicitly placed. The 

graphs in Fig. 9 show the number of communities discovered by the peers. The inner 

gray area is before and the outer black area is after the Community Discovery algorithm. 

The circles have values 0, 5, 10, and 15 from inside to outside. Our simulations have 

shown that before any communication, the average number of communities known to a 

peer was 0.5. This number increases to an average of 8.5 after the execution of the 

membership procedure at each peer. 

4.4.3 Average Number of Peers Reachable from a Peer 

We conducted experiments with 1,000 peers and 10,000 peers to traverse the 

outgoing links from each peer. We then counted the number of peers that could be 

reached after going to the direct neighbors (Level-1), in-direct neighbors after one 

indirection (Level-2), and in-direct neighbors after two indirections (Level-3). Table 2 

provides the values obtained by our experiment. 

Table 2 

Number of peers reached in various levels (For 10,000 peers) 

Max. Level traversed Number peers reached 

Level-1 65.8141 

Level-2 4380.7874 

Level-3 18929389.64 
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The graph in Fig. 9 was plotted using a logarithmic Y-axis. It shows how the 

number of peers that can be reached increases with greater depth. 

 

4.5 Factors Determining the Existence of Communities 

Given a set V of peer nodes, each having a set of personal interest attributes as a 

subset of the universal set of all possible interest attributes I, can we say with some 

certainty that the nodes will form into peer-to-peer communities after the attribute 

escalation process? Note that set I depends on the particular context of the peer-to-peer 

system. For instance in the peer-to-peer digital library, I could be the set of all possible 

genres of books, in another context, I could be the set of all known research areas within 

Computer Science. 

Consider a peer VVi ∈ , where { } { }NiVVVV N ,,2,1,,,, 21 KK ∈=  is a set of 

peer nodes. The set of personal interest attributes of iV  is IPi ⊆ , where 
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Figure 10. An exponential increase in the number of peers that can be reached 
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{ }attributesinterest  all=I , and the set of claimed interest attributes is ii PC ⊆ , and 

iii CPP −=′  is the set of unclaimed attributes. 

During the attribute escalation process, every peer sends its claimed attribute set 

to all of its 1-hop and 2-hop neighbors. 

Lets say that Nm ≤ is the number of 1-hop and 2-hop neighbors of iV , then eq. 

(1) gives the set of all claimed attributes received at iV  after the attribute escalation. 

U
m

jij
ji CC

0,

�
=≠

= , Nj ≤≤0  (1)

In addition, eq. (2.2) will give iV  the set of interest attributes that it shares with 

other peers. 

( ) ( )iiiii PCCC ′∩∪∩=Ψ ��  (2)

( )iiii PCC ′∪∩=Ψ∴ �  (2.1)

iii PC ∩=Ψ∴ �  (2.2)

Since we define communities as groups of peers that have common interests, eq. 

(2.2) also indicates the set of communities in which a peer is a member. For the sake of 

simplicity we assume that every common interest attribute indicates a separate 

community. 

Therefore the factors that determine whether a particular peer is a member of a 

community are: 

1. The number of 1-hop and 2-hop neighbors (m) 

2. The number of interest attributes available ( I ) 
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3. The number of interest attributes in the personal set ( P ) 

4. The number of interest attributes in the claimed set ( C ) 

Let us analyze the various factors in detail. 

The first factor relates to the links in a peer-to-peer network. A peer having more 

1-hop and 2-hop neighbors is less likely to obtain an empty C�  after escalations. The 

worse case scenario occurs when all m neighboring peers have empty claimed attribute 

sets. 

 

The probability that the claimed attribute set of a peer is empty depends on set P. 

The worse case scenario (high probability) can occur when a peer declares no personal 

interest attributes; therefore the claimed attribute set will also be empty. In addition, 

when set I is very large, and the personal attribute sets of the peers in the network are 
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very small, Ψ  is more likely to be Ø. It would be interesting to study the relation 

between the percentages of unique attributes (not contributing to community formation) 

vs. the ratio of P  to I . Fig. 11 shows this relation. 

In smaller peer-to-peer networks (N≤200), we observe that more than 50% of 

personal interest attributes remain unique, i.e. they do not contribute to community 

formation, when the ratio of P  to I  is below 40% and m=4. Increasing the number of 

neighbors (m=6) and the number of nodes (N=200) in the network reduces the percentage 

of unique attributes to 4% even when the ratio of P  to I  is lowered to 20%. 

However, in larger peer-to-peer networks (N≤100,000), less than 30% of personal 

interest attributes remain unique even with a |P| to |I| ratio below 6% and m=3. 

Therefore, with a higher number of nodes in the network, peers will share more of their 

personal interest attributes with some other peers even though each peer�s list of personal 

interests is only a small fraction of the total number of interest attributes available. 

4.6 Summary 

This chapter showed that the attribute based clustering of peers can be made to 

work, by defining an overlay network, consisting of peer links. It demonstrated that the 

peer formation algorithm stabilizes after just one iteration of the escalation technique. 

Additionally, it introduced an efficient community discovery procedure using weights 

and threshold. Our simulations of the discovery procedure have confirmed that peers can 

quickly discover numerous memberships in different peer-to-peer communities using 

very little computation and communication messages. 



   

 

CHAPTER 5 

INFORMATION DISSEMINATION USING PEER COMMUNITIES 

5.1 Motivation 

Peer-to-peer communities aid in the better dissemination of useful information 

amongst peers. For example, suppose node X belongs to a person interested in 

Amazonian Biological Catapults (ABC). After X declares this interest, it becomes a 

member of the community of ABC enthusiasts. Henceforth, all information X wants to 

share can be placed in a public directory and will be readable/searchable by all members 

of ABC. This concept can be extended to discover resources, physical devices, and 

network components. It also has some interesting security and access control issues 

(including trust management). The above example is interesting in the context of peer 

communities with no overlapping interests and is especially applicable in applications 

that follow the publish-subscribe-notify model (Gummadi and Hohlt, 2000). 

After we run our algorithms detailed in the earlier chapter that uses interest 

attributes for assisting in the formation of communities, peers will discover the 

communities that they participate in. However, since interest attributes are constantly 

changing values, the formation of communities needs to occur on a regular basis to keep 

the peer-to-peer system up-to-date and to keep the peers subscribed to the most suitable, 

existing communities. Then, again, a periodic increase in communication messages 

might not be suitable for low bandwidth networks, as regular communication will be 

affected by this increased traffic. Therefore, instead, we opt for Distributed Discovery 

followed by push-pull Peer-to-Peer Gossiping. 
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5.2 Challenges for Information Dissemination 

Prior approaches for information dissemination within a peer-to-peer network 

include flooding or hop-limited broadcast. Lamport and Chandy�s distributed snapshot 

algorithm (1985) is not relevant to solve this problem because of two reasons: 

1. The Lamport-Chandy algorithm makes an assumption of FIFO channels. This 

might not be true in our peer-to-peer network due to the use of overlay links. 

2. Termination detection of the Lamport-Chandy algorithm requires knowledge of 

the total number of nodes in the distributed system, and these nodes have to 

remain alive throughout the execution of the algorithm. This is not practical in a 

dynamic peer-to-peer network where peers can appear and disappear at random. 

Unlike these approaches, our technique begins with a discovery phase to gather 

data on peers that would be interested in receiving certain information. During the 

discovery phase certain properties of the peer-to-peer community are discovered. These 

properties include the approximate number of members and the information about the 

member peers. Since peers can go offline at anytime, the discovery phase cannot depend 

on the peers of a community to be online. 

For undirected intra-community information dissemination, we propose Peer-to-

Peer Gossiping. This is a push-pull approach that is resilient to peer failures and does not 

critically depend on any single peer or message. It involves communication (gossiping) 

amongst selected peers of a community (called seers) to achieve an objective that is 

similar to the case of rumor spreading (Karp et al., 2000). The selection of seers is based 

on the discovered data. As long as the discovered data is available and recent, the push 
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phase can be repeated numerous times with new information. Whenever required, a peer 

can retrieve the information from a nearby seer via a pull phase. The two major 

differences between our method and rumor spreading are: 

1. The lack of prior knowledge about the number of peers that exist 

2. The lack of random selection of peers 

In this chapter, our technique for peer-to-peer gossiping is described. It shows 

that our Distributed Discovery is a low overhead, simple protocol that identifies seers, 

and is easy to terminate. Our proposed algorithm for the push phase makes gossip 

information available to a large percentage of interested peers within a very short number 

of links. In addition, these two techniques facilitate the management of quickly changing 

community structures via undirected intra-community communication. Both discovery 

and gossiping techniques are efficient, de-centralized, robust and highly scalable. 

5.3 Distributed Discovery of Seers 

The primary goal of this algorithm is to gather information about the peer 

members of a community in order to select the peers that will become seers. As an 

intentional offshoot, this algorithm also gathers information about the community, such 

as the approximate number of online members, and the union of all the sets of claimed 

attributes that belong to the peer members. 

5.3.1 Peer Involvement and Seers 

Peers have involvement values associated with every community in which it is a 

member. Involvement is proportional to the number of peers in the neighborhood that 

claim the signature attributes of a particular community. Therefore peers with a higher 
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value of involvement associated with a community C have more peers within their 

neighborhood that are also members of C. We use the term seers when referring to these 

peers. Seers of a community are known directly or indirectly to most peer members of 

that community. This also means that information stored at the seers will be available to 

a large percentage of peers within the community 

Definition 5 

Peer Involvement 

The average of link weights for elements of the intersection set I = Ci ∩ S is 

directly proportional to the involvement of node i which has the claimed attribute set Ci 

in a peer-to-peer community with signature S. 

 

5.3.2 Unbound Distributed Discovery 

We employ a vector (Fig. 12), which is sent to every peer j in its neighborhood 

by the peer initiator (IS) of community S; such that S ⊆  claimed attribute set of j. Any 

peer can be the initiating peer. To guarantee that every community has at least one 

initiator, we programmed every peer to attempt to become the initiator of its 

communities. A globally unique vector ID can alert peers to drop vectors with higher IDs 

and inform the losing initiator, thereby ensuring that only the vector with the lowest ID 

Vector 
ID 

Peer
ID 

Peer 
Involvement … … … 

 

Figure 12. Distributed Discovery vector format 
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survives. This also means that in the end, all initiators, except one, will lose their status 

as the initiators of the algorithm.  

Table 3 

Algorithm for Unbound Distributed Discovery (at Initiator) 

Line Pseudo-Code 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

DISTRIBUTED-DISCOVERY-AT-INITIATOR 

  /* executes at the initiator */ 

  Create vector ‘v’ for community ‘P’ 
  Insert my information 
  Send ‘v’ to direct neighbors claiming ‘P’ 
  Send ‘v’ to 2nd-degree neighbors claiming ‘P’ 
  /* Wait till frequency peaks and then drops */ 

  Wait to receive end messages or loss of status message 

Eventually, the collective traversals by the copies of the surviving vector will 

ensure that no peer is visited twice, thereby discovering information from all members of 

the community S in deterministic time. Every peer that receives the vector appends its 

information to the vector and sends copies of the vector to its neighbors by using the 

same criteria as the initiating peer. With a community size of n peers, a total of O(n) 

vectors travel through the peer-to-peer network. The peers that receive the vector and 

have no neighbors that have yet to receive the vector construct an end message with the 

vector and send it to the initiating peer, whose identity can be obtained from the first 

element of the vector. Table 3 lists the algorithm for Unbound Distributed Discovery 

executed at the initiator and Table 4 lists the algorithm executed at receiving peers. 
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Table 4 

Algorithm for Unbound Distributed Discovery (at Receiving Peer) 

Line Pseudo-Code 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

DISTRIBUTED-DISCOVERY-AT-RECV-PEER 

  /* executes at each receiving peer */ 

  Receive vector ‘v’ 
  If I have already received ‘v’ 
    Send NACK to sender of the ‘v’ 
    End-prog 
  Else 
    Send ACK to sender of the ‘v’ 
  End-if 
  Insert my information 
  List neighbors (up to 2-levels) claiming ‘P’ 
  Remove sender of ‘v’ from list 
  If list has peer identities  
    Foreach peer in list 
      Send ‘v’ to peer 
      Receive acknowledgement from peer 
    End-for 
  Else 
    /* This means I am at the end */ 

    Create end message with ‘v’ 
    Send to Initiator 
    End-prog 
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23. 

24. 

25. 

26. 

27. 

28. 

  End-if 
  If NACK received from all peers 
    /* This means I am at the end */ 

    Create end message with ‘v’ 
    Send to Initiator 
  End-if 

The initiating peer waits a certain amount of time to receive end messages. The 

union of all end messages provides information about the members of community S to 

the initiator peer IS. Since all peers know the identity of the IS, they can obtain this 

information in a deterministic time if needed. This leaves one question unanswered: how 

can the waiting period for IS be set? 

 

In our experiments, we found that the initiating peer received end messages with 

the frequency graph shown in Fig. 13. The graph shows the number of end messages that 

the initiators of two separate communities received. The network size was 1000 nodes. 

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12

Time

Community A
Community B

Point A 

t

 

Figure 13. Frequency of end-message arrival at the initiator 
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20% of random peers were made to fail. Therefore, by making the initiating peer wait t 

cycles after the frequency drops to zero (Point A), most of the end messages can be 

collected. Here, t is calculated as the time it takes for the frequency to reach its peak 

from zero. If more messages arrive during this wait time, Point A is reset and the value t 

is recalculated for the new peak frequency. 

5.3.3 Hop-bound Distributed Discovery 

 

For communities that are extremely large, the Distributed Discovery algorithm 

will require a long time3 to conclude. Therefore the initiator will have to remain online 

for a long time to receive incoming vectors. To overcome this drawback, we propose an 

alternative hop-bound Distributed Discovery that works by sending a maximum hop 

count (h) value, along with the vector, so that a sub-set of the community can be 

discovered. The hop-count h can be set based on the initiator�s ability to wait. At a later 

                                                 
3 At most )(log nO m for a community with n peers each having an average of m neighbors. 
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Figure 14. Percentage of the community discovered as the value of hop count (TTL 

value) is increased 
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stage, a merging algorithm can be executed to combine various sub-sets into one 

community. Fig. 14 shows the increasing percentage of the community discovered, as the 

value of hop count is increased. Note the linear behavior of the hop-bound distributed 

discovery. The test was conducted on a network with 4,500 nodes. 

The merging algorithm can be executed as a low priority activity. It is not 

essential to the operation of algorithms, such as community-based search. That being 

said, the merging algorithm helps structure the peer-to-peer network so that the search 

algorithm works more efficiently. Following is the construct of the merging algorithm: 

Case 1: There exists more than one initiator within h hops. 

If the initiators have neighbors within or beyond h hops, then by virtue of the 

Distributed Discovery algorithm, the vector with the lower identification number 

survives. Therefore only one peer will remain as initiator until termination. The ousted 

initiator will know the identity of the extant initiator. All the results that are sent to the 

ousted initiator are forwarded to the extant initiator of the community. 

Case 2: There exists more than one initiator beyond h hops. 

If the end vectors received by the initiator indicate that the hop count had been 

reached, then there is a possibility that there are potential community members beyond h 

who might have been involved in their own hop-based discovery. The initiator therefore 

sends a message to the peers that sent the end vectors requesting them to obtain the 

identity of the initiator from their neighbors that were not involved in the current 

discovery. The initiator with the lowest peer identification value takes over as the new 

initiator of the merged community. However if no such initiator was found, then this 
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operation of locating an initiator beyond h will be repeated periodically so that 

eventually a merge operation takes place. 

 
Figure 15. Two cases that might occur during a hop-bound distributed discovery 

Fig. 15 portrays the above two cases. The large ellipse that encloses everything 

indicates the actual size of a community (h=∞). The smaller ellipses within indicate sub-

sets of the community (h∈N, where N is the set of natural numbers) that are discovered. 

Peers (dark gray circles) and their links (connecting edges) are shown in the figure. 

Initiating peers are marked with concentric circles. 

5.3.4 Distribution of “Seer” Status amongst Peers 

In our experiments we found that older peers, i.e. peers that have been part of the 

network for a longer time, are more likely to become seers of their communities. We 

attribute this to the fact that older peers have had more time to accumulate more links. 

Furthermore, when older peers are picked as seers by the initiator of the Distributed 

Discovery, their Link Weights are amongst the highest when compared to the Link 

Weights of the other seers. 

  h

  h

Case 1

Case 2
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Fig. 16 plots the peers that have been selected as seers due to their high Link 

Weights. Fig. 16 (a) is from experiments on a 1,000 node network and Fig. 16 (b) is from 

experiments on a 5,000 node network. The X-axis is the Rank in the Seer List. Seers with 

higher Link Weights are closer to the top of the list and have lower rank values. The Y-

axis lists the peer id from 0 to N-1. Older peers have lower peer id values. In both the 
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Figure 16. Distribution of �Seer� status amongst peers 
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graphs, note the clustering of points to the top left corner. This is because older peers are 

often selected as seers; and in the list of seers of a community, older peers usually have 

the highest Link Weights. 

5.3.5 Obtaining Bloom Filter Summaries 

Bloom filters (Bloom, 1970) are compact data structures that probabilistically 

represent the elements of a set. They support queries of the form, �Is X an element of the 

represented set?� and have been used in a variety of ways (Gribble et al., 2000; Gribble 

et al., 2001; Hodes et al., 1999; and Kubiatowicz et al., 2000). 

We extend our proposed Distributed Discovery protocol further by gathering 

Bloom filter summaries from each participating peer. Each peer that receives the vector 

creates its own Bloom Filter (see Table 5 for algorithm) and merges it using a simple 

bitwise-OR into the existing filter (see Table 6 for algorithm). After the end messages are 

received, the initiator merges all the filters, forming, a Bloom Filter that represents a 

compact summary of the attributes claimed by the peer members of a particular 

community. 

In order to reduce the rate of false positives that result due to the probabilistic 

nature of these data structures, we chose k=8 hash functions, and set the Bloom Filter 

size to m=2048 bits. Based on formula (3) (described in Fan et al., 1998, and Ripeanu 

and Iamnitchi, 2001), we get perr ≈ 1.E-05 for n=70 possible claimed attributes.  

k

m
kn

err ep 









−≈

−
1  (false positives) (3) 
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The reasons for this modification are justified in chapter 6 where we employ the 

Bloom Filter for a Community-Based Search algorithm. 

Table 5 

Algorithm for Constructing a Bloom Filter 

Line Pseudo-Code 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

CONSTRUCT-BLOOM-FILTER 

  /* executes at each peer */ 

  bloomFilter = new bool[m] initialized to false 
  foreach attribute in Claimed Attribute List 
    foreach hashFunction hi 
      bloomFilter[hi(attribute)] = true 
    end-for 
  end-for 

Table 6 

Algorithm for Merging Bloom Filters 

Line Pseudo-Code 

1. 

2. 

3. 

4. 

5. 

6. 

MERGE-BLOOM-FILTERS 

  /* executes at each peer on arrival of new vector */ 

  mergedFilter = new bool[m] initialized to false 
  foreach bFilter in List of Bloom Filters to merge 
    foreach bElement in bFilter 
      i = bloomFilter.IndexOf(boolElement) 
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7. 

8. 

9. 

      mergedFilter[i] = mergedFilter[i] bit-OR bElement 
    end-for 
  end-for 

5.4 Push-Pull Gossiping 

As indicated earlier, our algorithm utilizes the seers within a community to carry 

the information or updates, so that it will be available to most peer members. 

At the end of the Distributed Discovery algorithm, the initiator knows the 

involvement values of each peer member of the community. The initiator then creates a 

set of seers by selecting the peers that have the highest involvement values. By the 

definition of involvement, the peers in this set have more community members in their 

neighborhood when compared to other neighborhoods of peers that are not in the set. 

We show that by correctly choosing the size of the seer set, the majority of the 

community members will lie within the neighborhood of at least one peer from the set. 

Therefore any information that is sent to the initiator can be multicast to the members of 

the seers set so that it can be available (if required) to the majority of community 

members, within their neighborhoods. 

We conducted experiments on three different peer-to-peer networks to determine 

the behavior of our push algorithm. The initiator selected X% of the peer members with 

the highest involvement values as seers. Then it sent some information to these seers 

(push) with the hope that this information will be available to Y% of the remaining 

community members within 2 hops. In Fig. 17, the relationship between X and Y is 

shown for three different network sizes (1000, 5000, and 10000 nodes). The values 
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provide the average of two tests conducted on all the communities within those 

networks. 

On the average, we found that pushing information out to only 5%-10% of 

specially selected community members (seers) makes that information accessible (via a 

pull operation) to approximately 80% (or more) of the remaining members within their 

own neighborhoods. 

 

5.5 Summary 

This chapter presented a novel form of undirected intra-community 

communication using two phases, push and pull, that are preceded by a Distributed 

Discovery operation. Combined with the distributed discovery of seers, both the push 

and pull phases help with information dissemination within the community. The 
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Figure 17. Performance of our push-pull gossiping technique 
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Distributed Discovery algorithm involves gathering information on peer members of a 

community. A dynamic scheme was provided to determine a termination point for this 

algorithm. 

With the information gleaned from the Distributed Discovery, peers can execute 

our gossiping protocol using the push-pull phases. We ran experiments to show that 

pushing the information to only a small number of specially chosen peers allowed a large 

percentage of peer members of a community to obtain (pull) the gossip information from 

within their neighborhoods. 



   

 

CHAPTER 6 

INFORMATION SEARCH USING PEER COMMUNITIES 

6.1 Motivation 

By far, one of the biggest challenges of peer-to-peer systems is the ability to 

locate information like files or resources. Centralized searching (as used by Internet 

search engines such as Google) has the downside that the central authority controls the 

indexing and presentation of the information. Peer-to-peer searching allows anyone to 

publish information.  Searching involves cooperatively passing a query message until a 

peer that published the desired information is found. As a result, peer-to-peer searching 

reacts to dynamic changes much more quickly than centralized searching. This chapter 

briefly describes the mechanics of our search technique and provides some comparisons 

with known search algorithms. 

If the Computer Science (CS) and Medical (M) communities were disjoint, then 

the search operations for medical information performed by a node that belonged to the 

community CS would not produce any results. However, if the communities were linked 

at some point (see Fig. 18), lets say Q (Q belongs to both communities), then the medical 

information would be found, but at a great search expense, since, on the average, half of 

the community CS would be searched before a node from the community M is found. 

To mitigate such problems, we need a community based query propagation 

method. Thus, to provide efficient searching, it is better to search for one or more target 

communities, irrespective of the current membership of the searching node. 
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In Fig. 18, the vertices represent peers and edges represent end-to-end 

connections between peers. The closely connected collection of peers to the left and the 

similar but smaller collection to the right are two separate communities that are linked by 

a common peer. 

 

6.2 Challenges for Information Search 

Without a central server to index the content of peers, searching for information 

in peer-to-peer systems becomes a potentially costly operation. The lack of a central 

regulation also requires more innovative search techniques to tackle the scale and 

irregularity. The goal is to bring down the cost of searching in terms of number of 

hops/messages while still covering the largest possible number of peers in the system. 

This is somewhat complicated by the fact that communities are implicit, self-organizing, 

dynamic and constantly changing�forming, or breaking down due to changes in the 

peers. We also needed to compare the effectiveness of our search technique with other 

known peer-to-peer search algorithms. For this, we created a parameter that measured the 

quality of the results received in response to a search query. 

 

Figure 18. Example of peer communities linked by a common peer 
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6.3 Constructing the Search Query 

Any peer that needs to search the peer-to-peer network constructs a three-part 

search query containing: 

1. The identity of the peer creating the query 

2. The actual query for an item 

3. A list of meta-information that describe the item 

In an interest-based peer-to-peer network, such as our digital library (Section 

1.2), a peer might use interest attributes as meta-information to a query. For instance, if 

the query is for �books about Vampires,� the list of meta-information might include 

attributes such as, �Twentieth century,� �Bram Stoker,� and �European authors.� 

A solution to a query could mean that the peer either owns the requested books or 

can provide information about the peer that owns the requested books. 

6.4 Processing the Query 

To facilitate the search operation, the querying peer PQ sends the query to peer 

PS, which is chosen due to its membership within the appropriate communities that are 

determined by the meta-information attributes of the query. Section 5.3.4 described how 

Bloom filter summaries of claimed attributes were obtained for a particular community. 

At this stage, the bloom filters are checked to determine whether a peer claims any 

attribute from the meta-information list of the query. False positives can occur thereby 

increasing the overhead of locating PS. If PQ matches this description, then it is chosen to 

process the query. Else, PQ looks for PS from amongst its immediate neighbors. 

After the query is constructed, three approaches are possible for selecting PS 
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1. PS is the closest seer of a community whose signature S contains at least one 

attribute from the meta-information list 

2. PS is the seer in the community with S matching the maximum meta-information 

attributes 

3. PS is the seer of a community whose signature matches the most important 

attributes from a weighted meta-information list of attributes.  

The requirements of the system will determine which of the approaches will be 

implemented. For the purpose of our experiments, we used the first and the second 

approach. The first approach has the least communication cost for locating PS and the 

second approach has the highest communication cost. Therefore, peers in a system with 

more exacting search requirements could use either the second or the third approach. 

If PS is not located, PQ asks its neighbors to provide the identity of PS. In the 

peer-to-peer networks generated as described in the Section 3.2.2, we found that the 

latter case occurs about 26% of the time when 10% of the randomly selected peers 

created distinct queries. We also found that PS is almost always located after asking the 

neighbor peers. The cost of locating PS is amortized over a number of queries because 

peers remember the identities of the closest peers that are seers of a particular 

community. 

The query is then sent from PQ to PS. Note that this operation is similar to the 

push phase of gossiping, except that PQ (or one of its neighbors) selects PS instead of the 

initiator of the distributed discovery. PS stores the query on its blackboard. Blackboards 

are similar to web pages, and each peer has a blackboard. Like web pages, any peer can 

view the content on the blackboard of any other peer, provided that it knows the identity 
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of that peer so that the blackboard can be reached. To better organize the blackboard 

information, a peer can maintain separate blackboards for each community in which it is 

a member. 

6.5 Checking Blackboards 

Periodically and asynchronously, for each community C that it is a member of, a 

peer visits the blackboard for C maintained by each of its neighbors who are also 

members of C. Again, note the similarity with the gossiping algorithm (pull-phase). If 

the visiting peer can solve any of the queries on the blackboard, then a message is 

created and sent to the peer that created the query. The message created could be sent via 

email to the querying peer. 

Regardless of the outcome of the above procedure, the visiting peer copies the 

queries and places them onto its own blackboard for community C. Our experiments 

showed that even such an asynchronous, background communication amongst peers 

provides quick and efficient solutions to queries. 

Populated communities of asynchronously operating peers will quickly solve the 

queries (includes propagating it forward to peers that can better solve the query via a 

push to the appropriate PS) because there will always be a fraction of peer members that 

will be involved in pull-operations by checking the seers� blackboards. A time-to-live 

value can be added to queries so that stale queries do not use up the resources of the 

network. 
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6.6 Simulation Results 

In a digital library, participating peers could create two kinds of queries for 

books: 

1. Queries containing the title of the book 

2. Queries containing partial book contents or genre descriptions (content-based 

queries). 

Community-Based Search (CBS) can operate using either type of query. Our tests 

were performed using queries that were of the second kind. Therefore a solution to a 

query contained a list of all the peers that matched as many genre descriptions as 

possible, implying that the peers were likely to be members of the communities C={C1, 

� , CN} whose member/s owned the requested book. 

The performance of CBS was evaluated against the performance of two well-

known search techniques: 

1. Gnutella search, a hop-limited breadth-first search of the peer-to-peer network 

beginning from the querying peer 

2. Hub search, a hop-limited search like Gnutella, except that only one peer, 

selected for having the maximum number of neighbors, is forwarded the query 

each time. 

Gnutella search queries were terminated after 2 hops or after finding a single 

matching peer. Hub search queries were terminated after 5 hops or after finding a single 

matching peer.  

The parameters with which the search techniques were evaluated are: 
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1. The number of messages required for each search method 

2. Quality of the solution, which is a measure of the number of peers found that 

were likely to be members of the maximum communities in C, i.e., the peers 

found had high link weights for the attributes that matched the genre descriptions 

3. Satisfaction of the query, which is the percentage of meta-information attributes 

matched 

6.6.1 Experiment Setup 1 

We simulated the CBS operation over several networks. The first set of 

experiments used a 500 node peer-to-peer network created by the rules described in the 

section 3.2.2. A set (10% of available peers) of random peers was selected to create 

queries. Approximately 20% of the queries were for peers within one of the querying 

peer�s community, 10% of the queries attempted to find peers in overlapping 

communities, and 70% of the queries were for peers in some random, remote (non-

overlapping) community. The details of the queries were generated from a list of 25 

known attributes (|I|=25 and |P|=20). On an average, queries had 2.18 attributes in the 

meta-information list. The first approach was used for selecting PS.  

Fig. 19 shows that CBS consistently requires fewer messages in order to process 

the queries. Furthermore, CBS scales well when the number of queries increases. On the 

other hand, the number of messages generated during the Hub search method (Hub) 

begins to increase rapidly as more queries are created, because each hub forwards queries 

to all its neighbors. Although the Gnutella (Gnu) technique exhibits linear behavior 

(since hop-limit was set at 5), it still does not outperform CBS in terms of the number of 
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messages generated. The average number of messages per query was 1 for CBS (single 

push operation); 1.26 for Gnutella; and 2.56 for Hub search. 

 

 

The graph in Fig.20 displays the link weights of the peers found by the various 

search techniques. Higher link weights indicate that the responding peers have higher 
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Figure 19. Setup #1 - Evaluation of number of messages as the number of querying 

peers increases (X-axis) 
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Figure 20. Quality of the query solution 
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involvements in the communities whose member/s might own the requested book. The 

average link weight of responding peers was 28.67% for CBS; 16.95% for Gnutella; and 

16.59% for Hub search. 

CBS also outperformed the other search techniques in the satisfaction of the 

query. The peers that responded using CBS matched on average 81% of the meta-

information attributes. For Gnutella and Hub search, the responding peers only matched 

70% and 67% respectively. Therefore, search queries routed using CBS found more 

relevant peers since the responding peers were members of communities that were 

related to more meta-information attributes than Gnutella and Hub search with the same 

termination conditions as described earlier. 

6.6.2 Experiment Setup 2A 

The second set of experiments modeled a peer-to-peer network formed by 

computer science students from 5 different universities. The purpose of the network was 

to communicate and exchange resources, such as help files and sample source code, 

about different programming languages. A 5,000 node peer-to-peer network was created 

by our rules, as described earlier, to represent approximately 1,000 students per 

university. The list of known interest attributes included 96 programming languages that 

are currently being used (|I|=96). The list was obtained from Usenet groups (Google 

Groups) (See Appendix for the list). The Internet survey (Programmer�s Heaven) 

indicates that most engineers know 5 or more programming languages. Therefore in our 

model, we assigned an average of 5 programming languages to the set of personal 

attributes for each peer. On an average each peer claimed 2.26 attributes in its claimed 
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attribute set. The claimed attributes in this model represents the programming languages 

that the peer uses frequently. The model took into consideration that certain 

programming languages were very popular while most others were not so popular. Hence 

we assigned the programming languages using a power-law distribution so that 34.36% 

of the languages were assigned to about 79.69% of the peers. This resulted in 83 

communities being populated with around 0.1% of the peers in the network, and just 2 

communities being populated with 10% or more of the peers. Fig. 21 shows the power-

law distribution in the sizes of the communities that were formed. The logarithmic X-

axis plots the frequency and the logarithmic Y-axis plots the community sizes as a 

percentage of the number of nodes, i.e. 5,000. 

 

A set (10% of available peers) of random peers was selected to create queries. On 

an average, queries had 2.18 attributes in the meta-information list. The creation of 

queries also considered the disparity in programming language popularity and followed 

the same power-law distribution for attributes in the meta-information lists. The second 
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Figure 21. Power-Law Distribution in sizes of communities formed 
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approach was used for selecting PS, i.e. PS matches the maximum meta-information 

attributes. 

 

Fig. 22 shows that CBS requires many more messages in order to process the 

queries. Nevertheless, CBS scales well when the number of queries increases. Although 

the Gnutella (Gnu) technique follows the Hub search method (Hub) up to around 120 

queries, it soon branches off indicating the use of more messages. The average number 

of messages per query was 102.19 for CBS; 77.13 for Gnutella; and 54.94 for Hub 

search. 

The graph in Fig.23 displays the link weights of the peers found by the various 

search techniques. An increasing magnitude of Link Weights forms the logarithmic Y-

axis. The integer value of the meta-information attribute forms the X-axis. Higher link 

weights indicate that the responding peers have higher involvements in the communities 

whose member/s might own the requested resource. Note that responses are not evenly 
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Figure 22. Setup #2A - Evaluation of number of messages as the number of querying 

peers increases (X-axis) 
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distributed. Most of the responses are for lower attribute values (see clustering to the left 

of graph). This is because most queries were for popular programming languages and 

hence most responses were for those programming languages. However, queries related 

to less popular programming languages did not result in high quality responses in 

Gnutella or Hub search. CBS, on the other hand, consistently provides high quality 

responses even when queries are for less popular items and therefore perhaps further 

away from the querying peer. The average link weight of responding peers was 24.30% 

for CBS; 23.51% for Gnutella; and 28.76% for Hub search. 

 

CBS also outperformed the other search techniques in the satisfaction of the 

query. The peers that responded using CBS matched on average 57% of the meta-

information attributes. For Gnutella and Hub search, the responding peers matched 56% 

and 20% respectively. Therefore, again search queries routed using CBS found more 

relevant peers for the same reasons described before.  
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Figure 23. Setup #2A � Quality of the query solution 
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6.6.3 Experiment Setup 2B 

The third set of experiments used the same model described in section 6.6.2 (i.e. 

same network, similar method of creating queries and assigning attributes). The only 

difference to the CBS algorithm was that the selection of PS was done using the first 

approach, i.e. PS is the closest seer containing at least one attribute from the meta-

information list. 

 

Fig. 24 shows that CBS consistently requires fewer messages in order to process 

the queries. Furthermore, CBS scales extremely well when the number of queries 

increases. On the other hand, the number of messages generated during the Hub search 

method (Hub) and Gnutella search method (Gnu) begins to increase rapidly as more 

queries are created. The average number of messages per query was 106.42 for CBS; 

927.18 for Gnutella; and 330.58 for Hub search. 
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Figure 24. Setup #2B � Evaluation based on number of messages for search 

operation as the number of querying peers increases (X-axis) 
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The graph in Fig.25 displays the link weights of the peers found by the various 

search techniques. An increasing magnitude of Link Weights forms the logarithmic Y-

axis. The integer value of the meta-information attribute forms the X-axis. Again note 

that responses are not evenly distributed. The graph shows that queries related to less 

popular programming languages did not result in high quality responses in Gnutella or 

Hub search. CBS, on the other hand, consistently provides high quality responses even 

when queries are for less popular items and therefore perhaps further away from the 

querying peer. The average link weight of responding peers was 19.85% for CBS; 6.83% 

for Gnutella; and 18.90% for Hub search. 

CBS also outperformed the other search techniques in the satisfaction of the 

query. The peers that responded using CBS matched on average 56% of the meta-

information attributes. For Gnutella and Hub search, the responding peers matched 55% 

and 42% respectively. Therefore, again search queries routed using CBS found more 

relevant peers for the same reasons described before. 
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Figure 25. Setup #2B � Quality of the query solution 
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6.7 Summary 

This chapter described the mechanics of our Community-Based Search (CBS) 

query propagation technique. Our proposed solution for searching the peer-to-peer 

network takes advantage of interest-based communities of peers. This chapter 

demonstrated how our community-based search query propagation provides more 

efficient searching by targeting one or more communities, irrespective of the current 

membership of the searching peer. The community-based search technique consistently 

provides high quality responses even when queries are for less popular items and 

therefore perhaps further away from the querying peer. CBS also allows search 

operations to be based on content rather than just filenames, as in many existing peer-to-

peer search techniques. 



   

 

CHAPTER 7 

TRUST MANAGEMENT USING PEER COMMUNITIES 

7.1 Motivation 

Current peer-to-peer systems are often targeted for global information sharing, 

replicated file storage, and searching by using an end-to-end overlay network. Although 

these systems usually involve information exchange between peers, they have either 

protected peers� anonymity (Clark et al., 2000; and Dingledine, Freedman and Molnar, 

2000), or required transacting peers to trust each other implicitly (Gnutella). 

Both these approaches are vulnerable to attacks by malicious peers who could 

abuse the peer-to-peer system to spread viruses, incorrect, or damaging information. 

Therefore in order to enable practical information sharing in such decentralized and 

dynamic systems, a viable trust model needs to be incorporated that will allow peers to 

have varying amounts of dynamically changeable trust amongst each other. 

Traditionally, trust has been implemented through exhaustive policy lists that 

needed to be created at system design time, such as role-based access control (RBAC) 

lists (Ferraiolo and Kuhn, 1992). In contrast, our trust management system is dynamic 

and requires minimal global knowledge. Further, the decentralized nature of our 

algorithms makes it suitable for peer-to-peer systems. 

7.2 Challenges for Trust Management 

The main challenges that need to be addressed are: how to describe if a peer is 

trustworthy, what low-cost verification algorithm can be executed by a peer to determine 
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the trust value of some other peer, how are trust values about peers exchanged within the 

system, how can dishonest peers be punished. 

This chapter proposes an approach for trust management in peer-to-peer systems. 

It introduces a role-based model for trust amongst peers and shows that it is scalable, 

dynamic, revocable, secure and transitive. The trust model assigns role-based trust values 

to peers proportional to their status in the system. The status of a peer depends on its 

relationships with other peers. Our proposed solution permits asymmetric trust 

relationships that can be verified by any peer in the system through a simple, low-cost 

algorithm. Since trust values are proportional to the status of a peer, it is essential to 

ensure that relationships between any two peers will be legally binding and have non-

repudiation; that is peers cannot falsely deny their relationship with another peer. 

However it is equally essential that peers have the ability to revoke their relationships 

with malicious peers to punish them for false or damaging information. Finally, this 

paper introduces a metric that combines a peer�s trust value for each of its roles. The 

combined trust value is a single, relative, probabilistic guarantee that offers peers with a 

simple, verifiable trust metric about other peers in the peer-to-peer system. 

7.3 Dynamic Coalitions 

The research described in this chapter was related to a larger project known as 

Dynamic Coalitions (Dasgupta, Karamcheti and Kedem, 2000). Dynamic Coalitions 

enables a set of partners to work together while sharing information, resources, and 

capabilities in a controlled and accountable fashion. The partners themselves are 
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organizations composed of people, departments, computational entities, and agents who 

perform tasks consistent with the internal rules of their organization. 

Coalitions are supported by several innovative techniques such as transitive 

delegation, cryptographic file systems, capacity sandboxing, reverse sandboxing, and 

fine-grained access control. These techniques facilitate scalable authentication and 

revocable authorization of agent computations even when they span resources of 

different organizations. In addition, they improve overall efficiency by permitting 

migration of computations to, and a caching of services in, partly trusted environments of 

another organization. 

Let us enforce that every peer belong to at least one pre-determined group 

corresponding to the department or organization of its human user. For home users, the 

domain name of an Internet connection is used to identify the pre-determined group of 

the peer. Thus the basic construct of peer-to-peer systems can be used to implement a 

practical Dynamic Coalition environment where coalitions are created between peers in 

different groups. 

7.4 Peer-to-Peer Trust Model 

We propose an optimistic trust model that provides probabilistic guarantees based 

on the status / popularity of the peers. Peers have the ability to revoke their relationships 

with malicious peers and thus cause the trust values of wrong-doers to be reduced. The 

probabilistic guarantee provides a web-of-trust style estimate based on a peer�s past 

transactions. The accuracy of the guarantee depends on the thoroughness of the peer in 
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discovering and validating the trust values of other peers. Therefore, non-critical 

transactions need not consume the resources of the peer-to-peer system. 

This section describes our model for trust using peer-to-peer communities. It 

explains how trust can be assigned and discovered. The following sections discuss how 

trust can be revoked, and protected against non-repudiation. 

 

Figure 26. Example of a peer belonging to overlapping communities 

7.4.1 Peer Roles and Involvement 

Previously it has been pointed out that peer-to-peer communities are implicitly 

formed, self-organizing structures that depend on the declared (claimed) interests of 

peers. As a result, peers may belong to more than one, possibly overlapping community. 

In the case of a constrained application, such as a digital library, community structures 

will span across departmental or organizational boundaries. For instance, if the digital 

library were implemented by government departments to share documents and resources, 

a conceivable community might include peers from both, the Department of Commerce 

(Maritime Administration) and the Department of Environmental Resources that are 
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concurrently interested in pollution in US ocean water-ways. This is an example of a 

cross-departmental community (see Fig.26). Peers might also be part of intra-

departmental communities, such as the community of Maritime Administration, or the 

community of Transportation within the Department of Commerce. 

The different communities within which a peer can participate due to its claimed 

interest attributes constitute the roles of the peer. Every peer will have at least one role 

corresponding to its pre-determined group. Link Weights, by definition, indicate the 

number of peers known directly (1-hop neighbors), or indirectly (2-hop neighbors) to a 

peer within each of its roles (communities). Below a definition for involvement is 

provided, which, like Link Weights, is associated with each role Ψ of a peer V and is 

proportional to the number of peers within the neighborhood (1-hop and 2-hop 

neighbors) of V that are also part of Ψ. We call peers with high values of involvement, 

seers (See 5.3.1 for definition). 

For the purposes of simplicity, the examples discussed in this chapter consider 

peer-to-peer communities each formed due to single shared interest attributes. This 

means that the signature S of every community will be a single attribute set. Therefore, 

the intersection set Ci ∩ S can only contain one claimed attribute which has an associated 

Link Weight that is also the Involvement value of the peer in the community S. 

Nevertheless, our definition for Involvement provides a way to extract values in more 

complex scenarios where communities of peers share more than just a single interest 

attribute in common. 
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7.4.2 Trust, Links and Link Weights 

7.4.2.1 First Attempt: Trust and Links. We initially associated trust values with peer links 

due to the following reasons: (1) Peers create and maintain links to other peers whom 

they know and therefore trust (optimistically); (2) Since links are bi-directional, 

information provided by peers that have more links might be more trustworthy. The 

association of trustworthiness of information (authoritativeness) with links is used by 

Google in its PageRank metric (Brin and Page, 1998). The PageRank of a web page 

measures the authoritativeness of its content; (3) Peer links offer a simple, natural trust 

model that can easily be revoked. If after some transaction, a peer loses trust in its 

neighbor, it can break (remove) that link, thereby reducing the number of links at its 

neighbor. 

Examples of analogous systems with a similar association between trust and links 

include: citation graphs in scientific publications, where experts who are well-known and 

highly regarded by most other authors tend to be highly connected nodes (Kleinberg, 

1998; Adamic and Adar, 2000; and Page et al. 1998); and eBay points, where the rank of 

users is proportional to the number of transactions (purchase / sale) that they have 

completed with other eBay users. 

Despite its wide-spread use, the association of trust with peer links does not 

provide an elegant solution to trust management. Often, peers that are highly linked-to 

(hubs) make mistakes, provide incorrect information, or assist in spreading damaging 

information unintentionally. Pastor-Satorras and Vespignani (2001) argues that viruses 
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or damaging information from hubs can epidemically spread and persist within a scale-

free network, such as peer-to-peer network.  

We believe that by making a slight modification, links can provide practical and 

accurate trust guarantees in decentralized systems. The most important detail that has 

been lacking in previous trust models is the consideration that peers participate in many 

different communities (roles). Therefore, in the citation graph, although an author of 

papers in Biology is highly cited, it is conceivable that the author�s explanations of 

Electrical Engineering concepts are incorrect. Likewise, on eBay, a popular antique seller 

is not necessarily a trusted expert on electronic equipment. 

7.4.2.2 Second Attempt: Trust and Links Weights. It is necessary to consider the roles of 

a peer when deriving its trust value. We thus propose the use of Link Weights as an 

indication of role-based trust. With reference to Fig. 2, peer V knows more peers within 

the community of peers interested in �Biography�, than it knows within its other 

communities. As a result, information provided by V and classified as �Biography� is 

more likely to be accurate than information provided by V and classified as �Magazine�. 

Let us imagine another peer named W that has a Link Weight of 10 associated 

with the interest �Biography.� Using our model, V would have a trust value of 10 for W, 

but W would have a higher trust value of 23 for V. The association of Link Weights with 

trust values allows for asymmetric trust relationships that imitates trust relationships 

amongst humans in a social network. 
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7.4.3 Trust Value Distribution 

We plot the trust value distribution in a large-scale peer-to-peer network 

containing 1000 nodes. The graphs in Fig. 27 show a non-scale-free distribution of trust 

values. This is important because it highlights the dissimilarity in the distribution of trust 

values when it is obtained from links and our model, where trust values are obtained 

from Link Weights. 

In order to correctly model the peer-to-peer network, we incorporate the scale-

free property into the network topology (See 3.2.2 for technique used to form peer-to-

peer networks). Therefore, when associated with peer links, trust value distribution 

decays as a power-law (see Fig. 28), like the degree distribution of peers. This results in 

almost all peers having low trust values except for a small group of peers that have 

exceptionally high trust values. 

In contrast, Fig. 27 illustrates that the majority of peers start out with a median 

trust value (around the center of a range of values), while a small group of peers have 

either higher or lower trust values. In the network considered, the average trust value was 

100, maximum was 628, minimum was 7, and mode and median were 93. This 

distribution is most suitable for an optimistic trust model such as ours because a peer can 

enter into transactions with other peers whose trust values are median and most likely 

comparable to its own. Malicious peers will find their trust values dropping unlike in a 

scale-free distribution where trust values usually cannot be lowered because most peers 

start out with low trust values. For critical transactions, information can be sought from 

peers with higher trust values. 
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Figure 27. Trust Value Distribution when trust is associated with Link Weights 

(1000 peers) 
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7.4.4 Verification and Validation 

In section 4.3.1 we proposed an Attribute Escalation algorithm that uncovered 

implicit communities and enabled the formation of new communities. We propose a 

simple modification to the Attribute Escalation algorithm that will allow trust values of a 

peer to be guaranteed. Instead of simply sending out the list of claimed attributes, each 

peer V will construct the following message M and send it individually to each of its 

neighborhood peers {V1, V2, � , Vn}. 

{ } ( )MsourceEsourceCAsourceIPdestIPM ,,,=  

where, 

M is the constructed message, 

destIP is the destination identity (a neighborhood peer), 

sourceIP  is the sender identity (i.e. V), 

sourceCA is the claimed attributes list of the sender,  

( )MEsource is the M�s signature by the sender�s private key. 
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Figure 28. Trust Value Distribution when trust is associated with links (1000 peers) 
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Every peer is responsible for storing messages received from its neighborhood 

peers in a publicly accessible blackboard (see section 6.4). Blackboards are like websites 

and the content on a peer�s blackboard can be viewed by any peer within the system. 

Let us return to the example in Fig. 2. When V claims a Link Weight (and 

therefore trust value) of 23 for �Biography,� any peer W in the peer-to-peer system will 

be able to verify this value by visiting V�s blackboard and re-calculating the Link Weight 

from the posted messages. This calculation is a simple counting operation with a 

complexity of O(n) (See section 4.3.1 for detailed algorithm). Prior to verifying the Link 

Weight however, W might chose to validate the signatures of the messages posted on V�s 

blackboard in an attempt to uncover fabricated messages that were used to artificially 

increase V�s Link Weight value. We call these fabricated messages false messages. 

It might seem intuitive that before entering into a critical transaction with peer V, 

an exhaustive process needs to be employed where every one of V�s messages has its 

signature validated. However, we show that contrary to intuition, peers need only 

validate a small percentage of messages to uncover one or more false messages (if they 

exist) with a high degree of probability. 

To begin a brief theoretical analysis is provided and then it is backed with results 

obtained from experiments. 

Let N be the number of messages on peer V�s blackboard. Assume k messages are 

false. Therefore, N-k messages are not false. Also assume that peer W randomly selects 

m messages to validate. Now the probability that W will not discover any false messages 

is given by: 
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So the probability that W will discover a false message is: 

ρρ −=′ 1  (4.1)

Fig. 29 plots the relation between percentage messages verified and ρ'. The 

curves vary for k = 10% of N, k = 20% of N, and k = 30% of N. N was chosen to be 100. 

An increasing percentage of m/N forms the X-axis, while ρ' forms the Y-axis. The graph 

shows that selecting just 10-20% of the messages to validate will uncover false messages 

with probability of 70-95%. If a peer fabricates more messages, then the validation of 

messages will quickly uncover false messages. 
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Figure 29. The relationship between percentage of messages chosen to validate 

(%m/N) and probability of uncovering false messages (ρ') 
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The theoretical analysis indicates that peers will uncover false messages even 

when a small, randomly selected set of messages is validated. We also observed this 

behavior in our experiments. Fig. 30 presents two cases: N = 100 messages and N = 700 

messages, when the percentage of messages randomly selected for validation (%m/N) 

was set at only 10%. The graph shows that even when only 10% of the messages are 

false, 10% of those false messages were uncovered by a peer that randomly selected 10% 

of the original number of messages to validate. 

7.5 Using the Trust Model in Dynamic Coalitions 

Dynamic Coalitions are temporarily formed between peers belonging to different 

communities that each represents a separate organization / department. The trust model 

we proposed can be used to provide probabilistic trust guarantees to each peer in the 

coalition. Table 7 lists the algorithm that we use to obtain trust values of a peer in a 

Dynamic Coalition. Since peers can belong to more than one community, the FindTrust 
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Figure 30. Plot of the percentage of false messages uncovered (Y-axis) as the 

percentage of false messages is increased (X-axis). %(m/N) = 10% 
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method finds all the trust values (Link Weights) of a peer V. The method can be invoked 

by any peer W (not necessarily part of the Coalition). Initially, the CommonCommunities 

method checks V�s claimed attributes (posted as messages on its blackboard) for any 

common attributes between W and V, indicating possibly shared communities. This is a 

linear search operation with complexity of O(n). If there are no common attributes, W 

asks all its immediate neighbors if any of them share communities with V. In the worst 

case scenario (neighbors need to execute CommonCommunities), the operation has O(n2) 

complexity. The best case scenario (neighbors already know common communities from 

past transactions) is an O(n) operation. As a final attempt, if still no common attributes 

exist, W asks its 2-hop neighbors the same question (worst case: O(n2), best case: O(n)) 

before giving up trying to find trust values for V. Remember that after the attribute 

escalation algorithm, a peer knows the identities of all its 2-hop neighbors and therefore 

does not have to find their identities at this stage. In order to reduce bandwidth utilization 

and processing time, a peer might decide to forego finding trust values from its 2-hop 

neighbors. Our experiments revealed that 2-hop neighbors need to be consulted 32% of 

the time when 10% of randomly selected peers invoked FindTrust. 

Table 7 

Algorithm to Find Trust Values of a Peer in a Coalition 

Line Pseudo-Code 

1. 

2. 

3. 

/* function prototype declaration */ 

bool CommonCommunities(int);  /* peers share communities? */ 

int[] ListTrusts(int);  /* list all known trust values */ 
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4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

bool AskNeighbors(int);  /* 1-hop neigh share communities? */ 

int[] Lower(int[]);  /* multiply trust values by 0.5 */ 

bool Ask2HopNeighbors(int);  /* 2-hop neigh share? */ 

bool VerifiedTrusts(int[]);  /* verify and validate values */ 

/* FIND-TRUST (peer) */ 

int[] FindTrust(int PeerID) 
  int[] list_Trusts; /* trust values */ 
 

  if (call CommonCommunities(PeerID)) 

    list_Trusts = call ListTrusts(PeerID); 

  else-if (call AskNeighbors(PeerID)) 

    list_Trusts = call ListTrusts(PeerID); 

    list_Trusts = call Lower(list_Trusts); 

  else-if (call Ask2HopNeighbors(PeerID)) 

    list_Trusts = call listTrusts(PeerID); 

    list_Trusts = call Lower(list_Trusts); 

    list_Trusts = call Lower(list_Trusts); 

  else-if 
    WARNING “No trust values!”; 
    return NULL; 
  end-if 
 

  if (call VerifiedTrusts(list_Trusts)) 

    return list_Trusts; 
  else 
    WARNING “Found False Messages”; 
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31.     return list_Trusts; 
  end-if 

 
For each attribute found in common with V, the corresponding Link Weight is 

stored in list_Trusts. Link Weights provided by 1-hop neighbors will be multiplied by 

0.5 and values provided by 2-hop neighbors get multiplied by 0.25. All trust values are 

validated using the process described in the earlier section. 

The list of trust values provides a peer in a coalition with a probabilistic trust 

guarantee about another peer. Tampered values do not go undetected (due to verification 

and validation), making these values secure. Additionally, trust values can be transitively 

obtained from other peers and scaled down depending on the peer providing the values. 

As an alternative to our current scaling down process, trust values transitively 

obtained from another peer could be multiplied by the trust value of that peer. However, 

it has not yet been explained how a peer can have a single trust value. The next section 

will present our idea for a collective trust value of a peer that can be used for a more 

realistic scaling process amongst other benefits. 

7.5.1 Aggregating Trust Values into an iComplex 

The list of trust values associated with each peer can be used to provide 

probabilistic guarantees to other peers. However in a practical implementation of peer-to-

peer communities, a single shared interest attribute will not always be the signature of a 

community. At the end of section 3.1 it was assumed that every community signature 
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contained only a single attribute. Let us see what happens when this simplification 

assumption were temporarily removed. 

Firstly this means that |S| could be greater than one. Imagine a digital library with 

several communities of peers. Suppose there exists a community (of science-fiction 

enthusiasts) with signature S1 = {�Fiction�, �Technical�}, and another community (of 

fiction enthusiasts) with signature S2 = {�Fiction�}. Finally assume that Peer V (from 

Fig. 2) is a member of both these overlapping communities. Based on the Link Weight 

values from Fig. 2 and the definition of Involvement (Section 5.3.1), V is more involved 

in the community of fiction enthusiasts than in the former community. If there exists 

another peer W with Link Weight values, �Fiction�=18 and �Technical�=18 (therefore 

W�s Involvement in community S1 is 18), then information provided by W and classified 

as �science-fiction� is more likely to be accurate than information provided by V having 

the same classification. 
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Figure 31. Behavior of iComplex when calculated as a sum of all trust values 
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Involvement values, which are associated with each community within which a 

peer is a member, play an important role in determining accurate role-based trust values 

of a peer. Now a proposal is made for aggregating all involvement values corresponding 

to a peer into an iComplex. An iComplex value is calculated by each peer individually 

and stored on their own blackboards. Since iComplex values are, in essence, 

aggregations of trust values, the verification and validation process described earlier will 

still apply. As a system design, all peers need to agree upon the aggregation function to 

calculate their iComplex values. Examples include but are not restricted to: sum of all 

trust values, or average of all relative trust values. A relative trust value rt1 = t1 divided 

by the approximate size of community S1={C1}, where t1 is a trust value for attribute C1, 

and the approximate size of the community is obtained through Distributed Discovery 

(see chapter 5). 

Fig. 31 shows the behavior when sum is the aggregate function used to compute 

iComplex values. The first graph illustrates that higher iComplex values implies that the 

peers are seers (highly-involved) in more communities and therefore these seers have 

higher trust values than other peers in each of their roles. The next graph shows the 

relationship between iComplex and number of memberships held by a peer. This graph is 

significant because it demonstrates the effectiveness of an iComplex value aggregated 

using a simple sum function. The graph shows that peers cannot increase their iComplex 

values by simply joining many communities. In fact peers that are members of many 

communities are most likely to have low iComplex values (notice the clustering of points 

close to the Y-axis). The final graph shows that peers cannot obtain high iComplex 
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values by joining very large communities. The peers with the highest iComplex values 

were members of average sized communities. 

Therefore, iComplex values calculated by adding all trust values of a peer can 

provide a reliable, collective trust value. Moreover, peers will not be able to synthetically 

increase their iComplex value by simply joining more communities or joining larger 

communities. A higher iComplex usually indicates that the peer is a seer of many 

communities and therefore trusted by the peers of those communities. 

7.5.2 Using iComplex for Information Assurance 

An incremental change to the format of the responses can be made by requiring 

the responding peer to send its iComplex value as well. This provides the querying peer 

with information on the probabilistic trust values of the responding peers. The iComplex 

values received will allow a querying peer to rank responses based on the probabilistic 

trust values of the responding peers. 

7.5.3 Attacks and Threat Assessment 

Without the iComplex value, malicious peers could misinform a querying peer 

about the peer that owns a particular book / resource. A misinformed querying peer will 

then obtain incorrect / damaging data from the peer identified by malicious peers. In a 

business-world implementation of digital libraries, malicious peers might dishonestly 

divert traffic away from certain other peers. 

Since iComplex values are ultimately calculated from Link Weights which are 

dependent on the number of peers in one�s neighborhood that share a certain attribute, 

one way of fraudulently increasing the iComplex value would be to create dummy 
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neighbors with real peer identities and interests. This is a difficult problem to solve. 

There have been a few attempts to solve this by: using reputation-based systems or 

making it difficult to create a new peer identity (Murphy VII and Manjhi, 2002) (by 

computationally expensive key generation, or associating it with a government issued 

identity number, such as social security number, voter identification number, and so on). 

Finally, because our trust model provides probabilistic guarantees, a peer with a 

high iComplex value can still provide (with low probability of doing so) incorrect / 

damaging information as a result of a query. We therefore propose a revocation 

mechanism (described in the next section) as a means to punish wrong-doers. 

7.6 Revocation and Non-Repudiation of Trust 

This section discusses how our trust model allows peers to revoke relationships 

with malicious peers, and the non-repudiation of peer relations. Malicious peers are not 

only peers that provide incorrect/damaging information, but also are peers that use unfair 

methods to lower the trust values of their neighbors. 

7.6.1 Revocation 

We propose a distributed revocation mechanism, where each peer maintains its 

own revocation list. Therefore a disgruntled peer W that has been affected by previous 

transactions with a malicious peer V can simply maintain this information in a revocation 

list posted on its blackboard. 

The validation procedure described earlier involves validating the signatures of 

the messages posted on a peer V�s blackboard in an attempt to uncover false messages. In 

order to allow for revocation of these messages, we propose an additional action that 
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peers entering into a transaction with V can execute after the validation procedure. We 

call this action Revocation Check. The action entails: (1) randomly selecting a few 

validated messages from V�s blackboard; (2) determining the peers that authored those 

messages; and (3) visiting the blackboards of the message authors to check for possible 

revocations. If the Revocation Check finds that the message authors have placed V in 

their revocation lists, then those messages are called revoked messages. 

Section 7.4.4 explains the relationship between the number of messages validated 

and the number of false messages uncovered. We therefore know that if 10% of the 

messages of a peer V were selected for Revocation Check and 10% of V�s neighbors had 

placed V in their revocation lists, then the Revocation Check will find that 10% of the 

selected messages are revoked messages. 

As a result, if V has maintained a good record over a large number of 

transactions, except for a few incorrect/damaging transactions, then its trust value will 

remain high. Also, a malicious neighbor of V would not be able to independently bring 

down the V�s trust value.  

Finally, the Revocation Check procedure can ascertain if a malicious neighbor W 

of V has unfairly revoked its relationship with V. This means that W continues to account 

V�s signed messages to calculate its trust values and iComplex value even after placing V 

in its revocation list. 

7.6.2 Non-Repudiation 

It has been shown how peers can revoke their relationships with malicious peers 

to punish them for false or damaging information. However, since trust values are 
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derived from peer links, it is essential to ensure that peers cannot falsely deny their 

relationship with another peer. 

A malicious neighbor W of V cannot lie about the fact that it is a neighbor of V. 

This is because the signed message (section 3.3) addressed to V and created by W will be 

publicly accessible from V�s blackboard. Therefore trust values calculated as a result of 

peer links have non-repudiation. 

7.7 Summary 

This chapter presented an approach for trust management in peer-to-peer systems. 

Our optimistic role-based model for trust amongst peers was introduced and it was 

shown to be scalable, dynamic, revocable, and secure. Our proposed solution permits 

asymmetric trust relationships that can be verified by any peer in the system through a 

simple, low-cost algorithm. This chapter introduced a metric known as iComplex that 

combines a peer�s trust value for each of its roles into a single, relative, probabilistic 

guarantee of trust. Finally, it discussed how our trust model allows peers to revoke 

relationships with malicious peers, and the non-repudiation of peer relations. 



   

 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Future Work 

The current crop of peer-to-peer systems focuses on sharing of resources 

(primarily files) amongst peers. Since for most purposes a client-server configuration 

provides a simple architecture and guaranteed performance, there has been very little 

interest within industry circles for adopting the peer-to-peer paradigm. Additionally, a 

completely decentralized system makes revenue generation and accounting non-trivial. 

This has further hindered industry participation and early-adoption. 

Some interesting challenges that can be solved within the peer-to-peer paradigm 

are: revenue generation and accounting, so that companies or individuals can make 

money; alternative trust models and reputation systems, to allow for secure and 

trustworthy collaboration amongst peers; and investigations into the feasibility of 

integrating the peer-to-peer paradigm with mobile ad hoc networks, multimedia 

streaming, or grid computing, in order to uncover new and valuable applications. 

Within the context of this work, additional work can attempt to further bring 

down the number of messages during community-based search. This would involve the 

deployment of a non-trivial caching algorithm amongst peers within a community so that 

the communication overhead of locating the appropriate seer by asking one�s neighbors 

is reduced. 
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8.2 Conclusions 

Peer-to-peer communities provide a method for arranging large numbers of peers 

in a self configuring peer relationship based on declared attributes (or interests) of the 

participating peers. This method is expected to have an impact on sharing of resources, 

pruning of search spaces, and trust relationships amongst peers in the network. 

This dissertation shows that the attribute based clustering of peers can be made to 

work, by defining an overlay network, consisting of links. Links are user-directed 

connections based on experience and can be fine tuned for search and sharing 

performance. The peer formation algorithm is shown to stabilize in two rounds using the 

escalation technique. Additionally, an efficient community discovery procedure is 

introduced that uses weights and a threshold. Our simulations of the discovery procedure 

have confirmed that peers can quickly discover numerous memberships in different peer-

to-peer communities using very little computation and communication messages. 

Next, a push-pull communication technique was presented that helps disseminate 

information and propagate search queries within a peer-to-peer network. An initial set of 

algorithms provided a method for peers to discover their community memberships and 

certain properties of their communities. These properties include the approximate 

number of members and the information about the member peers. A repeatable push-pull 

gossiping protocol is then used to disseminate information only within the community of 

interested peers. We used simulations to provide evidence of the protocol�s efficiency, 

robustness, and scalability. 
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Our solution for searching the peer-to-peer space also takes advantage of interest-

based communities of peers. Several experiments demonstrated how our community-

based search query propagation provides more efficient searching by targeting one or 

more communities, irrespective of the current membership of the searching peer. The 

community-based search technique also allows search operations to be based on content 

rather than just filenames, as in many existing peer-to-peer search techniques. 

This dissertation also presented an approach for trust management in peer-to-peer 

systems. It introduced an optimistic role-based model for trust amongst peers and 

showed that it is scalable, dynamic, revocable, and secure. Our solution permits 

asymmetric trust relationships that can be verified by any peer in the system through a 

simple, low-cost algorithm. A metric known as iComplex was established to combine a 

peer�s trust value for each of its roles into a single, relative, probabilistic guarantee of 

trust. Finally, the dissertation discussed how our trust model allows peers to revoke 

relationships with malicious peers, and the non-repudiation of peer relations. 
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 1 comp.lang.ada 
2 comp.lang.apl 
3 comp.lang.asm.x86 
4 comp.lang.asm370 
5 comp.lang.awk 
6 comp.lang.beta 
7 comp.lang.c.moderated 
8 comp.lang.clarion 
9 comp.lang.clipper.visual-objects 

10 comp.lang.clos 
11 comp.lang.clu 
12 comp.lang.cobol 
13 comp.lang.dylan 
14 comp.lang.eiffel 
15 comp.lang.forth.mac 
16 comp.lang.fortran 
17 comp.lang.functional 
18 comp.lang.basic.misc 
19 comp.lang.pascal.mac 
20 comp.lang.c++.leda 
21 comp.lang.pascal.borland 
22 comp.lang.pascal.delphi.advocacy 
23 comp.lang.pascal.delphi.announce 
24 comp.lang.pascal.delphi.components.misc 
25 comp.lang.pascal.delphi.components.usage 
26 comp.lang.perl.announce 
27 comp.lang.perl.misc 
28 comp.lang.perl.moderated 
29 comp.lang.pop 
30 comp.lang.postscript 
31 comp.lang.prograph 
32 comp.lang.prolog 
33 comp.lang.rexx 
34 comp.lang.ruby 
35 comp.lang.sather 
36 comp.lang.python.announce 
37 comp.lang.scheme.c 
38 comp.lang.mumps 

39 comp.lang.oberon 
40 comp.lang.smalltalk.advocacy 
41 comp.lang.tcl.announce 
42 comp.lang.visual.basic 
43 comp.lang.basic.realbasic 
44 comp.lang.basic.visual.3rdparty 
45 comp.lang.basic.visual.announce 
46 comp.lang.c++.moderated 
47 comp.lang.java.help 
48 comp.lang.java.javascript 
49 comp.lang.java.machine 
50 comp.lang.java.misc 
51 comp.lang.java.programmer 
52 comp.lang.java.security 
53 comp.lang.java.setup 
54 comp.lang.java.softwaretools 
55 comp.lang.java.tech 
56 comp.lang.lisp.x 
57 comp.lang.ml 
58 comp.lang.modula2 
59 comp.lang.modula3 
60 comp.lang.java.3d 
61 comp.lang.java.advocacy 
62 comp.lang.atUNIV 
63 comp.lang.java.api 
64 comp.lang.java.beans 
65 comp.lang.java.corba 
66 comp.lang.java.databases 
67 comp.lang.java.developer 
68 comp.lang.java.gui 
69 comp.lang.lisp.franz 
70 comp.lang.lisp.mcl 
71 comp.lang.icon 
72 comp.lang.idl 
73 comp.lang.idl-pvwave 
74 comp.lang.javascript 
75 comp.lang.labview 
76 comp.lang.limbo 
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77 comp.lang.logo 
78 comp.lang.misc 
79 comp.lang.pascal.ansi-iso 
80 comp.lang.objective-c 
81 comp.lang.php 
82 comp.lang.pl1 
83 comp.lang.pascal.misc 
84 comp.lang.pascal.delphi.databases 
85 comp.lang.pascal.delphi.misc 
86 comp.lang.pascal.delphi.components.writing 
87 comp.lang.perl.modules 
88 comp.lang.perl.tk 
89 comp.lang.sigplan 
90 comp.lang.verilog 
91 comp.lang.vhdl 
92 comp.lang.vrml 
93 comp.lang.scheme.scsh 
94 comp.lang.smalltalk.dolphin 
95 comp.lang.basic.visual.database 
96 comp.lang.basic.visual.misc 
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