

PEER-TO-PEER COMMUNITIES:

ARCHITECTURE, INFORMATION AND TRUST MANAGEMENT

by

Mujtaba Khambatti

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

ARIZONA STATE UNIVERSITY

December 2003

© 2003 Mujtaba Khambatti
All Rights Reserved

PEER-TO-PEER COMMUNITIES:

ARCHITECTURE, INFORMATION AND TRUST MANAGEMENT

by

Mujtaba Khambatti

has been approved

December 2003

APPROVED:

 , Co-Chair

 , Co-Chair

Supervisory Committee

 ACCEPTED:

 Department Chair

 Dean, Graduate College

iii

ABSTRACT

Peer-to-peer systems have the ability to harness vast amounts of resources from a

scalable collection of autonomous peers and especially emphasize on de-centralization

and lack of a central authority. As a result these systems are particularly attractive to

everyday home computer users, who seem empowered by the potential to independently

select and change their own policies, roles, and responsibilities. By allowing peers to

share a portion of the authority, these systems also possess other interesting technical

characteristics such as self-organization and adaptation.

This dissertation introduces the notion of interest-based communities of peers and

describes how these implicit structures can be used to naturally organize peer-to-peer

systems for discriminative information dissemination, pruning the search space, and role-

based trust. Communities are like interest groups, modeled after human communities.

They are self-organizing, possibly overlapping structures involving peers that are actively

engaged in the sharing, communication and promotion of common interests.

Initially, the behavior of randomly created communities is investigated and

modeled. Then the community formation and discovery algorithms are presented and

their complexity studied. The experiments illustrate that these algorithms do not require

extensive computation or communication on the part of individual peers. Subsequently, a

novel push-pull gossiping technique is provided that improves decentralized information

dissemination by communicating only amongst peers within a specified community of

interest. The technique enables the maintenance of dynamically changing communities

and consists of a distributed discovery algorithm followed by repeatable push-pull

gossiping. Experiments show that pushing gossip information to only a small number of

iv

peers allows a large percentage of peer members of a community to obtain (pull) the

information within just two hops.

Peer communities help in pruning the search space and in content-based searches

within the peer-to-peer network. This dissertation describes a community-based search

query propagation scheme which provides more efficient searching by targeting one or

more communities, irrespective of the current membership of the searching peer. The

experiments demonstrate how a community-based search can reduce the number of

messages and improve the quality of the search results when compared to other known

peer-to-peer search algorithms.

Finally, an approach for community-based trust management is discussed. An

optimistic role-based model for trust amongst peers is employed and it is shown to be

scalable, dynamic, revocable, secure and transitive. The solution permits asymmetric trust

relationships that can be verified by any peer in the system through a simple, low-cost

algorithm.

v

In the name of Allah, the Compassionate, the Merciful.

To my mother, whose dedication to my success I shall always remember;

to my father, whose ingenious edification methods armed me for success;

and to my loving wife, whose inspiration and encouragement drives me towards success.

vi

ACKNOWLEDGMENTS

My journey during graduate school was challenging and educational. I would like

to acknowledge the efforts of the individuals who provided me with valuable guidance,

encouragement and tools during all or a part of the process.

Most beneficial to my doctoral research was the vision, direction and significant

feedback from my advisor, Dr. Partha Dasgupta; and the guidance and committed

concentration towards technical quality from my co-advisor Dr. Kyung Dong Ryu.

Additionally, I also received useful comments from the members of my committee, Dr.

Sandeep Gupta and Dr. Donald Miller, during my doctoral research and presentations.

I frequently engaged in discussions with my colleagues and this provided me with

feedback about my work and also contributed towards my education process. Notable

amongst them are Austin Godber, Mufaddal Khumri, Prashant Dewan and Shu Zhang,

and all other members of the Distributed Operating Systems Group at Arizona State

University.

I received indispensable encouragement from my mother, while she was alive, my

father, my wife, and my sister, many times despite the long distances that separated us.

Finally, I would also like to mention my appreciation for my special friends Jim and Ellie

Sprout.

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES... xii

LIST OF FIGURES ... xiii

CHAPTER

 1 INTRODUCTION ... 1

 1.1 Overview.. 1

 1.2 Statement of the Problem... 4

 1.3 Potential Contributions and Limitations .. 5

 1.4 Organization... 7

 2 BACKGROUND LITERATURE.. 9

 2.1 Related Applications.. 9

 2.1.1 Groupware and Collaborative Applications............................ 9

 2.1.1 Peer-to-Peer Applications ... 10

 2.2 Related Systems ... 11

 2.2.1 Link Structure Analysis .. 11

 2.2.2 Small-World Networks ... 14

 2.2.3 Scale-Free Networks... 15

 2.2.4 Multicast Groups and Communities in Ad Hoc Networks 15

 2.3 Related Techniques.. 17

 2.3.1 Information Dissemination in Distributed Systems................ 17

 2.3.2 Peer-to-Peer Searching Techniques .. 19

 2.3.3 Trust Models ... 21

viii

CHAPTER Page

 2.4 Summary and Conclusions .. 22

 3 MODELING A PEER-TO-PEER NETWORK... 23

 3.1 Modeling Peers .. 23

 3.1.1 Interest Attributes.. 23

 3.1.2 Peer Links ... 25

 3.1.2.1 The Need for Peer Links .. 26

 3.1.2.2 Creating Peer Links.. 26

 3.1.3 Link Weights... 27

 3.2 Peer-to-Peer Network Formation... 29

 3.2.1 Using the Internet Topology ... 29

 3.2.2 Creating Our Own Peer-to-Peer Network............................... 32

 3.3 Summary .. 34

 4 FORMATION AND DISCOVERY OF PEER COMMUNITIES 36

 4.1 Motivation.. 36

 4.2 Challenges for Formation and Discovery .. 37

 4.3 Forming Communities ... 38

 4.3.1 Attribute Escalation Algorithm... 40

 4.3.2 Experimental Evaluation... 42

 4.4 Discovery of Community Membership ... 43

 4.4.1 Community Discovery Algorithm .. 45

 4.4.2 Experimental Evaluation... 45

ix

CHAPTER Page

 4.4.3 Average Number of Peers Reachable from a Peer.................. 47

 4.5 Factors Determining the Existence of Communities 48

 4.6 Summary .. 51

 5 INFORMATION DISSEMINATION USING PEER COMMUNITIES...... 52

 5.1 Motivation.. 52

 5.2 Challenges for Information Dissemination...................................... 53

 5.3 Distributed Discovery of Seers .. 54

 5.3.1 Peer Involvement and Seers.. 54

 5.3.2 Unbound Distributed Discovery ... 55

 5.3.3 Hop-bound Distributed Discovery.. 59

 5.3.4 Distribution of �Seer� Status amongst Peers 61

 5.3.5 Obtaining Bloom Filter Summaries .. 63

 5.4 Push-Pull Gossiping... 65

 5.5 Summary .. 66

 6 INFORMATION SEARCH USING PEER COMMUNITIES...................... 68

 6.1 Motivation.. 68

 6.2 Challenges for Information Search .. 69

 6.3 Constructing the Search Query .. 70

 6.4 Processing the Search Query ... 70

 6.5 Checking Blackboards ... 72

 6.6 Simulation Results ... 73

 6.6.1 Experimental Setup 1.. 74

x

CHAPTER Page

 6.6.2 Experimental Setup 2A... 76

 6.6.3 Experimental Setup 2B ... 80

 6.7 Summary .. 82

 7 TRUST MANAGEMENT USING PEER COMMUNITIES........................ 83

 7.1 Motivation.. 83

 7.2 Challenges for Trust Management... 83

 7.3 Dynamic Coalitions ... 84

 7.4 Peer-to-Peer Trust Model... 85

 7.4.1 Peer Roles and Involvement ... 86

 7.4.2 Trust Links and Link Weights .. 88

 7.4.2.1 First Attempt: Trust and Links....................................... 88

 7.4.2.2 Second Attempt: Trust and Link Weights 89

 7.4.3 Trust Value Distribution ... 90

 7.4.4 Verification and Validation... 92

 7.5 Using the Trust Model in Dynamic Coalitions 95

 7.5.1 Aggregating Trust Values into an iComplex 98

 7.5.2 Using iComplex for Information Assurance........................... 102

 7.5.3 Attacks and Threat Assessment .. 102

 7.6 Revocation and Non-Repudiation of Trust 103

 7.6.1 Revocation .. 103

 7.6.2 Non-Repudiation... 104

 7.7 Summary .. 105

xi

CHAPTER Page

 8 CONCLUSIONS AND RECOMMENDATIONS .. 106

 8.1 Future Work ... 106

 8.2 Conclusions.. 107

REFERENCES .. 109

APPENDIX

 A LIST OF PROGRAMMING LANGUAGE GROUPS ON USENET 116

xii

LIST OF TABLES

Table Page

 1 Community Discovery Algorithm ... 45

 2 Number of peers reached in various levels (For 10,000 peers) 47

 3 Algorithm for Unbound Distributed Discovery (at Initiator) 56

 4 Algorithm for Unbound Distributed Discovery (at Receiving Peer) 57

 5 Algorithm for Constructing a Bloom Filter ... 64

 6 Algorithm for Merging Bloom Filters ... 64

 7 Algorithm to Find Trust Values of a Peer in a Coalition............................... 96

xiii

LIST OF FIGURES

Figure Page

 1. Venn diagram of interest attribute sets for a peer .. 24

 2. Peer V compares its claimed attributes with neighboring peers and then
 calculates Link Weight values ... 28

 3. Power-law distribution of the frequency Vs degree plot for the web
 topology graphs.. 31

 4. Topology of networks grown up to 100 nodes .. 32

 5. Properties of the resulting peer-to-peer network created by enforcing rules. 34

 6. Procedure to escalate attributes (�Technical� in this case)............................ 41

 7. Stabilization of Attribute Escalations .. 42

 8. Percentage of communities discovered (average over all peers) 46

 9. Number of communities discovered by each peer... 46

 10. An exponential increase in the number of peers that can be reached 48

 11. Percentage of interest attributes not common with any peer as a factor of
 |P| / |I|.. 50

 12. Distributed Discovery vector format ... 55

 13. Frequency of end-message arrival at the initiator.. 58

 14. Percentage of the community discovered as the value of hop count (TTL
 value) is increased.. 59

 15. Two cases that might occur during a hop-bound distributed discovery 61

 16. Distribution of �Seer� status amongst peers .. 62

 17. Performance of our push-pull gossiping technique 66

 18. Example of peer communities linked by a common peer.............................. 69

xiv

Figure Page

 19. Setup #1 - Evaluation of number of messages as the number of querying
 peers increases (X-axis) ... 75

 20. Quality of the query solution ... 75

 21. Power-Law Distribution in sizes of communities formed 77

 22. Setup #2A - Evaluation of number of messages as the number of querying
 peers increases (X-axis) ... 78

 23. Setup #2A � Quality of the query solution .. 79

 24. Setup #2B � Evaluation based on number of messages for search
 operation as the number of querying peers increases (X-axis) 80

 25. Setup #2B � Quality of the query solution... 81

 26. Example of a peer belonging to overlapping communities 86

 27. Trust Value Distribution when trust is associated with Link Weights
 (1000 peers) ... 91

 28. Trust Value Distribution when trust is associated with links (1000 peers) ... 92

 29. The relationship between percentage of messages chosen to validate
 (%m/N) and probability of uncovering false messages (ρ')..................... 94

 30. Plot of the percentage of false messages uncovered (Y-axis) as the
 percentage of false messages is increased (X-axis). %(m/N) = 10% 95

 31. Behavior of iComplex when calculated as a sum of all trust values 100

CHAPTER 1

INTRODUCTION

1.1 Overview

Most earlier multi-computer, distributed systems projects were built either using a

client-server architecture or as a collection of independent computers that appeared to its

users as a whole. The challenges faced by systems adhering to either paradigm were:

transparency, scalability, fault tolerance, heterogeneity, and openness. Client-server

applications generally adopted a network operating system design and therefore had the

advantage of openness, heterogeneity and scalability. However, with dependence

invested in the server/s, many client-server applications suffered due to low fault

tolerance. On the other hand, middleware based operating systems offered high

transparency, heterogeneity and openness. The downside in this case was that all

computers had to conform to a standard interface and policies set by the designers of the

middleware.

The emergence of decentralized and dynamic file-sharing applications, such as

Napster in 1999 and Gnutella in 2000, provided the catalyst that drew a lot of attention to

a new breed of distributed systems called peer-to-peer (P2P) systems. We define a peer-

to-peer system as a distributed system in which network-addressable computing elements

called peers have comparable roles and responsibilities, communicate information, share

or consume services and resources between them. The ability of peer-to-peer systems to

harness vast amounts of storage from a scalable collection of autonomous peers and its

emphasis on de-centralization and lack of a central authority have made it an attractive

2

systems solution to everyday home computer users, who seem empowered by the ability

to independently select and change their own policies, roles, and responsibilities. By

allowing peers to share a portion of the authority, these systems also possess other

interesting technical characteristics such as self-organization and adaptation.

Throughout this dissertation, the term �peer� is used interchangeably with �node�,

to refer to a network-addressable computing element, like a desktop personal computer, a

laptop computer, a personal digital assistant, a networked printer, or any other electronic

device that has the capability of computation and network connectivity. We assume that

each peer has a static IP address that serves as the peer identity. While this assumption is

not universally true, it can be facilitated through various techniques (dynamic DNS, IPv6,

or firewall penetrating mechanisms) that are outside the scope of this dissertation.

Current peer-to-peer systems are often targeted for global information sharing,

replicated file storage, and searching by using an end-to-end overlay network. The

building block of these systems is the notion of a peer-group, or a number of peers that

cooperate with each other for a common purpose. In our research, we investigate a

generalization of the notion of peer group to a multiplicity of groups (possibly

overlapping) called peer communities. While a group is a physical collection of objects,

a community is a set of active members, who are involved in sharing, communicating and

promoting a common interest.

Our concept of peer communities is loosely based on the idea of �interest groups�,

such as Yahoo Groups, Usenet Newsgroups, or web communities. The user of a peer in

the system claims to have some interests and depending upon the claims of all the peers�

users, communities are implicitly formed (made up of peers with the same or similar

3

interests). Note that communities are formed implicitly, i.e. they are self organizing. If a

peer in New York declares an interest in wombats, and a peer in China also declares the

same interest, then the two peers become part of an implicit, undiscovered community. A

peer may belong to many different communities and communities may overlap.

With the exception of web communities that have been shown to be self-

organized (Flake et al., 2002) and the alt.* Usenet groups; almost all other present-day

groups are a result of a priori planning and implementation or at the very least they

require some central control or a central authority through which advertisements can be

made. In contrast to this, peer-to-peer systems are usually completely de-centralized and

can also be dynamic.

We associate a peer-to-peer network with graph G (V, E), where the set of nodes,

V, represents peers and the set of edges E consists of end-to-end overlay links between

pairs of peers from V. We consider this network of peers as being analogous to social

networks that are comprised of humans. In fact, much of our proposed modeling of peer-

to-peer networks was motivated by our observations of similar patterns in social

networks. For instance, the inclination of autonomous elements in a social system to form

groups and associations led us to believe that a populated peer-to-peer system that is

made up of peers and an end-to-end overlay network will also form similar groups

(communities). Thus, peer-to-peer communities are a natural extension for arranging

distributed peer-to-peer systems. Like their social network counterpart, communities also

enhance the capabilities of each member.

4

1.2 Statement of the Problem

The recent popularity of peer-to-peer systems has fueled numerous research

proposals and commercial ventures to organize peer-to-peer networks, efficiently search

for files, secure information, and provide new applications. Of these approaches, some

propose structured peer-to-peer networks, where there is a close coupling between the

topology of the network and the location of data. This dissertation focuses entirely on

unstructured peer-to-peer networks where the reverse is true, i.e. there is no coupling

between network topology and the location of data. In fact the topology of the network is

not controlled by any global scheme and is allowed to adapt, grow/shrink dynamically as

new nodes join or leave the network corresponding to the actions of their users.

The main challenges that needed to be addressed were:

1. Distributed discovery and dynamic maintenance of communities

2. Distributed dissemination of information

3. Distributed searches of information

4. Trust management

An evaluation of our research will demonstrate the feasibility and efficiency of

our algorithms with the support of peer communities.

The canonical application that we consider for our algorithms is a digital library

built out of a collection of peers in which each peer owns a set of books that it is willing

to share with other peers1. The subjects of the books owned by a peer form its set of

interests. Peers are implicitly grouped into communities based on the common interests

1 Assume these are non-copyrighted works.

5

they share. Because a peer could own books from a variety of subjects, we can imagine

that a peer could be a member of multiple communities.

1.3 Potential Contributions and Limitations

This dissertation proposes a natural organization of autonomous peers into

communities that can be uncovered using decentralized techniques. It provides a

motivation for the study of peer-to-peer communities and illustrates some scenarios to

define and discover peer communities. Using simulated models of communities, we have

gained an insight to the architecture of randomly created communities. Our algorithm for

the discovery of communities allows for the computation of Link Weights, a very

important value that enables the working of all our subsequent algorithms. Link weights

help determine the membership of a peer in a community. They are also used to rank

peers in a community for the purposes of information dissemination and trust.

Next it presents a novel push-pull communication technique that utilizes

communities for better information dissemination via a repeatable push-pull gossiping

protocol. Prior approaches for information dissemination or information retrieval within a

peer-to-peer network have tried to send out messages through all or selected peers and up

to a certain depth. Unlike these approaches, our technique involves a distributed

discovery phase to gather data on peers and identify highly popular peers (called seers) in

a community. Unlike supernodes or hubs, which are peers that have a lot of links to other

peers, seers are identified based on their links to peers within a community. It describes

the distributed discovery algorithm and show that it is a low overhead, simple protocol

that is also resilient to failures and delays in peers.

6

Thereafter, the push phase of peer-to-peer gossiping multicasts information to the

seers identified in the distributed discovery phase. Whenever required, a peer can easily

and quickly retrieve this information from a nearby seer via a pull phase. Our

experiments show that pushing gossip information to only a small number of nodes

allows a large percentage of peer members to obtain (pull) the information within just

two hops.

Our proposed solution for pruning the search space and content-based searches

within the peer-to-peer network also takes advantage of interest-based communities of

peers. Earlier peer-to-peer search techniques, such as flooding, directed flooding, iterative

deepening (Yang and Garcia-Molina, 2002), and local indices (Yang and Garcia-Molina,

2002), had a major drawback that information located farther away from a peer can be

found only at a considerable search expense. We built a community-based search query

propagation scheme that provides more efficient searching by targeting one or more

communities, irrespective of the current membership of the searching peer. Our technique

follows the innate method of searching that human beings use in the analogous social

network, where queries for unknown items are asked to �those that know.� The

community-based search technique also allows search operations to be based on content

rather than just filename searches employed by many existing peer-to-peer search

techniques.

Finally, this dissertation proposes an approach for community-based trust

management in peer-to-peer systems. It presents an optimistic role-based model for trust

amongst peers and shows that it is scalable, dynamic, revocable, secure and transitive.

Our proposed solution permits asymmetric trust relationships that can be verified by any

7

peer in the system through a simple, low-cost algorithm. This dissertation also introduces

a metric known as iComplex that combines a peer�s trust values for each of its roles into a

single, relative, probabilistic guarantee of trust. At the end, it discusses how our trust

model allows peers to revoke relationships with malicious peers, and the non-repudiation

of peer relations.

In terms of limitations, the techniques that we developed can only be applied to

specific applications, such as the digital library, where the set of interests is constrained,

well defined and understood by almost all the peer members. Our proposed algorithms

would place individual users into peer communities based on the common interests that

they share with other peers. A generalized peer-to-peer system, where the set of interests

includes the universe of all possible interests, might not contain a single peer that shares

common interests with other peers. Therefore no communities would form.

Some of the other problems that are outside the scope of this dissertation are:

specifying how static IP addresses can be used as peer identities, providing more than just

probabilistic guarantees of trust, describing the channel or protocol of communication

used by peers, defining the format for the interests of a peer, obtaining the interests from

a peer, and fragmentation of the network after targeted denial-of-service attacks on seers.

1.4 Organization

This dissertation is organized as follows:

Chapter Two surveys literature related to the area. It describes related

applications, such as existing peer-to-peer applications; related systems, such as complex,

8

self-organizing systems; and related techniques in information dissemination, distributed

search and decentralized trust models.

Chapter Three discusses our modeling of a peer-to-peer network. The chapter

introduces and defines some important terms, including Link Weights, which are

associated with modeling peers. Next, it presents our method of forming peer-to-peer

networks for use in our experiments.

Chapter Four presents our Attribute Escalation algorithm to aid peer community

formation and subsequent discovery. Our experiments reveal that Attribute Escalation

stabilizes after just one round of communication.

Chapter Five contains our technique for disseminating information through peer

communities using our novel push-pull communication method. The chapter also

describes the Distributed Discovery algorithm which is executed before gossiping can

disseminate information amongst community members.

Chapter Six provides a discussion on our community-based search technique. It

describes the experiments used to evaluate our method with existing peer-to-peer search

algorithms. These experiments illustrate that community-based search results in higher

quality results, usually with lower communication costs.

Chapter Seven delves into our trust management using peer communities. First,

the trust model is introduced. Next, the chapter details how the trust model can be

employed in a distributed system. Finally, the chapter discusses the revocation and non-

repudiation of trust amongst peers in the network.

Chapter Eight provides our conclusions and recommendations for future

directions.

CHAPTER 2

BACKGROUND LITERATURE

2.1 Related Applications

This section describes existing groupware, collaborative and peer-to-peer

applications that are related or appear related to our work with peer communities.

2.1.1 Groupware and Collaborative Applications

Groupware are computer-based systems that support groups of people engaged in

a common task (or goal) and provide an interface to a shared environment (Ellis, Gibbs

and Rein, 1991). Some examples of groupware computer-based systems are message

systems, group decision support systems, electronic conference rooms, multi-user

editors, coordination systems, and intelligent agents.

Usually, groupware is not developed ��from scratch��, but with the help of a

groupware toolkit. One particular example of a groupware application is Jive Forums

(Jive Software). This is an open architecture Java based discussion forum application.

Jive Forums is a flexible and reliable discussion forum software, and can handle the

heavy traffic of major sites.

Argo (Gajewska et a., 1994) is another groupware application that allows

medium-sized groups of users to collaborate remotely from their desktops, in a way that

approaches as closely as possible the effectiveness of face-to-face meetings. It combines

high quality multi-party digital video and full-duplex audio with telepointers, shared

applications, and whiteboards in a uniform and familiar environment.

 10

2.1.2 Peer-to-Peer Applications

PAST (Druschel and Rowstron, 2001) is a large-scale, peer-to-peer archival

storage utility that provides scalability, availability, security and cooperative resource

sharing. Files are immutable and can be shared at the discretion of their owner. PAST is

built on top of Pastry (Rowstron and Druschel, 2001).

Another example of a peer-to-peer storage system is OceanStore (Kubiatowicz et

al., 2000). This utility is a global persistent data store designed to scale to a large number

of users. It provides a consistent, highly available, and durable storage utility on top of

an infrastructure comprised of untrusted servers.

P-Grid (Aberer, 2001) is a peer-to-peer system based on a virtual distributed

search tree. The tree exists in part within each peer and only the cooperation of all peers

can provide a view of the overall tree. Every participating peer's position is determined

by its path, that is, the binary bit string representing the subset of the tree's overall

information that the peer is responsible for.

KaZaA is a peer-to-peer file sharing system that allows users to search and

download files. It gives clients more power by transforming them into �supernodes� that

can broker search requests of weaker clients.

On the similar lines, Farsite (Bolosky et al., 2000) is a serverless, distributed file

system that does not assume mutual trust among the client computers on which it runs;

and Publius (Waldman, Rubin and Cranor, 2000) is a Web publishing system that is

highly resistant to censorship and provides publishers with a high degree of anonymity.

Some other peer-to-peer projects like (Stoica et al., 2001) aims to build scalable,

robust distributed systems using peer-to-peer ideas. Their work is mainly based on the

 11

Chord distributed hash lookup primitive. There have even been attempts such as Anthill

(Babaoglu, Meling and Montresor, 2002), which is a framework aimed at supporting the

design, development and analysis of peer-to-peer protocols and algorithms.

Also noteworthy is Kademlia (Maymounkov and Mazi`eres, 2002), a novel

routing algorithm for peer-to-peer networks based on the XOR metric. The Kademlia

project is a research effort to implement a full-featured peer-to-peer system based on the

XOR metric routing.

2.2 Related Systems

We consider peer-to-peer networks and complex systems as being closely related.

Complex systems have been defined by (Flake, 2000) as �a collection of many simple

nonlinear units that operate in parallel and interact locally with each other so as to

produce emergent behavior.� Patterns in several complex systems have been found to be

self-organizing (Axelrod and Cohen, 2000), often because of the autonomous creation of

links by participating nodes (with some influence of a partial system view). Discussed

below are some noteworthy techniques and properties of complex, self-organizing

systems.

2.2.1 Link Structure Analysis

A considerable amount of research has focused on the analysis of link structure in

collections of objects. Through these analyses, researchers had hoped to discover a

process that could be implemented to effectively identify and discover specific patterns

in the collection. Early attempts to analyze the collective properties of interacting agents

have been found in social networks (Scott, 1991), where link structures like cliques,

 12

centroids and diameters were studied. The field of citation analysis (Garfield, 1979) and

bibliometrics (White and McCain, 1989) seek to identify patterns in collections of

literature documents by using citation links. Stated below is one such notable definition

of web communities that uses an analysis of the link structure of web pages to effectively

identify communities.

�We define a community to be a set of web pages that link (in either direction) to

more web pages in the community than to pages outside of the community.� (Flake,

Lawrence and Giles, 2000)

At first glance, the above definition seems just what is needed to identify peer-to-

peer communities. However a closer look will indicate that if peers are placed in peer-to-

peer communities based entirely on link analysis, we will not accomplish our goal of

allowing peers to simultaneously be members of more than one peer-to-peer community.

A particularly remarkable solution was proposed by (Kleinberg, 1998) to

discover patterns by analyzing links. It offers an approach called HITS that is related to

spectral graph partitioning and methods used by the Google search engine (Page, 1997).

Their recursive definition of hub and authority web pages work to rank results by a

measure of importance and usefulness, thereby identifying key web sites related to some

community and also the related websites that might be members of the same community

(Gibson, Kleinberg and Raghavan, 1998). However their approach depends on the link

topology; and therefore, it cannot effectively assist in the discovery of communities that

are ring-based without any dominating members.

Complementary to the HITS algorithm, (Flake, Lawrence and Giles, 2000)

requires a �seed� web site as the starting point to begin a focused crawl in order to

 13

identify a community. Members of the community are discovered by using the maximum

flow / minimum cut framework using the two sets called source and sink, initially

composed of well-known web sites. When mapped to the peer-to-peer domain, this link-

based technique has the drawback of not truthfully modeling real world peer-to-peer

communities where peers can simultaneously be members of more than one community.

Perhaps a combination of graph theory and link analysis is needed to correctly

identify patterns within collections of peers. For instance, if the links of a peer were

classified, as outgoing and incoming links, and if there existed cycles in the directed

graph formed by the peers and their links, we would have successfully identified peer-to-

peer communities. These cycles could be discovered in a depth-first manner by

exhaustively traversing the outgoing links to check if they visit a peer twice.

Except for the expected scalability problem in the above technique, it seemed to

guarantee to uncover any pattern that might exist. Yet the procedure would fail for some

of the most commonly occurring patterns: the star, where many peers are huddled around

a single peer like in a client-server configuration, or the tree, where no cycles would

exist. Even in a domain that is purely peer-to-peer, one cannot avoid the fact that often

many peers will use a small subset of peers or even a single peer as a source of

information or for collaborations.

In trying to empower peers to discover their community membership, we had to

find an efficient solution that would be practical, unlike the NP-complete solutions

offered by graph partitioning (Garey and Johnson, 1990).

 14

2.2.2 Small-World Networks

Previously, self-organizing systems had been described by Erdös and Rényi

(1961) who modeled them as random networks and studied their properties. In random

networks, the topology of the network is the result of links between randomly selected

nodes. Watts and Strogatz (1956) also studied the properties of large regularly connected

graphs of nodes that contain a few random long-distance edges between nodes. They

modeled this structure and demonstrated that the path-length between any two nodes of

the graph is in fact surprisingly small. As a result, they called these semi-random systems

small-world networks. These networks have low characteristic path lengths (as in

random networks) and high clustering coefficients (as in regular networks).

Subsequently, a number of papers have acknowledged the existence of small-world

networks in the Internet topology (Bu and Towsley, 2002; and Albert, Jeong and

Barabási, 1999); the power grid of the western United States; various social networks

(Watts and Strogatz, 1956), such as the collaboration graph of film actors; Erdös

numbered research scientists; and even in the neural network of the worm

Caenorhabditis elegans. Further, Granovetter (1973) discusses the existence and shows

the importance of weak social ties (links) between highly connected clusters of friends.

The similarity of peer-to-peer networks to social networks and the fact that

humans direct peer links led us to believe that peer-to-peer networks would also exhibit

small-world behavior. In fact, this has already been observed in existing peer-to-peer

networks, such as Gnutella.

 15

2.2.3 Scale-Free Networks

More recently, Strogatz (2001) and Amaral et al. (2000) observed that many

networks demonstrated topological properties that were different from the predictions

made by random network theory. In particular, the existence of some very well

connected �hub� nodes dramatically influenced the behavior of these networks during

random node failures and spreading of information. These networks are characterized by

the uneven distribution of connections (links) in the nodes of the network.

Specifically in these networks, called �scale-free networks,� the degree

distribution of participating nodes was found to decay as a power law, very much unlike

a random network that exhibits a Poisson distribution of node degrees. Hence, scale-free

networks have sometimes been described as power-law networks.

It has been shown that various networks, such as the collaboration graphs of

actors and scientists, were developed due the feature of preferential attachment (Jeong,

Néda and Barabási, 2003; Newman, 2001; and Barabási and Albert, 1999). This feature

describes the probability of a node acquiring new links as an increasing function of the

links that it currently has.

In order to correctly model the peer-to-peer network, it is important that we also

incorporate the scale-free property into the network topology.

2.2.4 Multicast Groups and Communities in Ad Hoc Networks

Multicast groups and ad hoc communities may seem similar to our work. A

literature-survey with special emphasis on the differences between our approaches is

provided below.

 16

Caronni et al. (1998) support dynamic groups of arbitrary size where members

can join and leave at random. Groups are created by a Group Manager who is responsible

for receiving and processing �join� and �leave� requests from participating nodes.

Additionally, group parameters are published using a directory service. In the distributed

flat key management scheme, certain nodes in the group perform a regular heartbeat

communication by sending out some messages using a multicast, broadcast, or anycast

channel.

Keoh and Lupu (2003) call an ad hoc network of devices a community. This

differs greatly from our definition of communities as interest-based groups of peers. The

approach relies on a community specification, called doctrine that is created prior to the

establishment of the community. The doctrine specifies various policies, roles and

permissions that users need to abide by in order to participate in activities of the

community.

Hong and Gerla (2002) introduce a dynamic group discovery and formation

technique that aggregates ad hoc nodes that have movement affinity. Like in our work,

these groups are dynamically formed, split or broken down and group members may join

or leave at random. Their system requires the execution of Group Leader Election

algorithms that rely on periodic broadcast of messages.

Meissner and Musunoori (2003) propose a group integrity management scheme

and describe scenarios that seem similar to the goals of our research. Their concept of

groups involves WiFi-enabled gadgets aggregated based on application-level or user-

specified reasons, such as a �music� group or a �books� group. Members of a group

 17

communicate using either unicast or multicast and each group requires a group manager

that administers join or leave requests.

In contrast to these systems, peer communities implicitly form due to declared

interest attributes of peers, they require no manager, peers join and leave a group

implicitly, but can efficiently discovery their community memberships, and inter-group

communication uses a push-pull technique.

2.3 Related Techniques

Although peer-to-peer systems have only recently become popular, distributed

algorithms, such as gossiping, have been around for more than a decade. This section

provides an overview of some existing algorithms and techniques that have similar goals

as our peer-to-peer techniques for information dissemination, search and trust.

2.3.1 Information Dissemination in Distributed Systems

Listed below are some well-known techniques that are being used for propagating

information in distributed systems. Some of these algorithms are also applicable for

searching peer-to-peer networks.

a. Flooding and Swamping

The flooding algorithm allows for directed communication amongst an a priori fixed

set of neighboring machines (Harchol-Balter, Leighton and Lewin, 1999). Internet

routers use this method today (Moy, 1998]. The swamping algorithm is similar to the

flooding algorithm, except that, it facilitates communication between all the

neighbors of a particular machine, not just its initial neighbors (Harchol-Balter,

Leighton and Lewin, 1999).

 18

b. Random pointer jump

The disadvantage of the swamping algorithm is that it is highly communication

intensive. Instead of communicating with all its neighboring machines, if only one

randomly chosen neighbor was selected during each round, it would reduce the

communication complexity. However, this method can only be applied to strongly

connected networks, where there is a path between every pair of machines (Harchol-

Balter, Leighton and Lewin, 1999).

c. Gossiping and Rumor Spreading

The class of gossip algorithms has long been used in distributed systems (Agrawal,

Abbadi, Steinke, 1997; Demers et al., 1987; Hayden and Birman, 1998; Oppen and

Dalal, 1983; Pelc, 1996; and Renesse, Minsky and Hayden, 1998). Some examples of

how it is being used include efforts to maintain consistency in a distributed replicated

database (Agrawal, Abbadi, Steinke, 1997; and Demers et al., 1987), or to gather

information about failures in a network of machines (Renesse, Minsky and Hayden,

1998). Randomized rumor spreading (Karp et al., 2000) is a similar epidemic

algorithm that can be used for the lazy transmission of updates to distributed copies

of a database. The algorithms use a simple randomized communication mechanism to

ensure robustness. However, most gossiping algorithms assume knowledge of all the

machines that exist on the network, and that information from one or more of the

machines needs to be broadcast to the others.

d. Name-Dropper

The Name-Dropper (Harchol-Balter, Leighton and Lewin, 1999) algorithm is similar

to the Random Pointer Jump algorithm, but it has a lower communication cost and

 19

also requires fewer rounds to terminate. The Name-Dropper algorithm has been

implemented at MIT to solve a resource discovery problem. Currently, it is also

being used by Akamai Technologies. In contrast to gossiping and rumor spreading,

the Name-Dropper algorithm attempts to broadcast in networks where the machines

might not be aware of each other�s existence. Their results show that allowing

machines to learn about the existence of other machines during the gossip process

will make gossiping efficient even when starting from a weakly connected graph.

2.3.2 Peer-to-Peer Searching Techniques

In the client-server model, a single server or a group of servers that has access to

a data repository execute the search algorithms on behalf of a requesting client machine.

The absence of servers in the peer-to-peer model makes searching for information in

these networks a potentially costly operation. Peer-to-peer searching involves

cooperatively passing a query message until a peer that published the desired information

is found. Current peer-to-peer applications employ search algorithms that attempt to

bring down the cost of searching in terms of number of hops/messages while still

covering the largest possible number of peers in the system.

Search techniques in unstructured peer-to-peer systems have loose guarantees.

Existing techniques include the naïve flooding; propagating search queries to all

neighboring peers who in turn forward the query until the query has been forward a pre-

defined number of times (Gnutella); forwarding a search query with a pre-defined hop

limit to only one neighboring peer at a time (Clarke et al., 2002); employing highly

connected peers or �superpeers� to propagate or broker the search query (Adamic et al.,

 20

2001; and KaZaA); peer gossiping to maintain accurate local copies of membership

directories and summaries of shared content (Cuenca-Acuna et al., 2003); and so on.

Often structured approaches employ Distributed Hash Tables (DHT) to organize

peer-to-peer networks. DHT based systems require participating peers to store either

entire files or file locations when the identity of the peer corresponds to the hash of the

filename published by another peer. Therefore, DHT based systems can be used to

perform efficient filename searches because they guarantee the location of the data if it

exists within the system at the cost of a data insertion overhead (i.e. the process of

updating tables at the peer whose identity matches the hash of the filename). Example

algorithms include (Stoica et al., 2001), which uses a distributed hash lookup primitive to

build a scalable and robust peer-to-peer system; and (Rowstron and Druschel, 2001),

which is a large-scale, peer-to-peer archival storage utility that provides scalability,

availability, security and cooperative resource sharing.

Additionally, (Yang and Garcia-Molina, 2002) has proposed techniques that

reduce communication and increase the probability of arriving at a solution to the search

query. Some examples of these proposed techniques are iterative deepening, which

iteratively increases the depth unto which to flood; directed BFS, which selects a subset

of immediate neighbors heuristically and entrusts them with further propagation of the

search query using directed BFS again; and local indices, which require each peer to

maintain a local index of the contents of peers that exist within a pre-determined range.

 21

2.3.3 Trust Models

Perhaps one of the earliest formalizations of trust in computing systems was done

by Marsh (1994). He attempted to integrate the various facets of trust from the

disciplines of economics, psychology, philosophy and sociology. Rahman and Hailes

(2000) proposed a trust model based on the work done by Marsh but specifically for

online virtual communities where every agent maintained a large data structure

representing a version of global knowledge about the entire network. Gil and Ratnakar

(2002) describe a feedback mechanism that assigns credibility and reliability values to

sources based on averages of feedback received from individual users.

More along the lines of trust and social networks, Golbeck, Hendler and Parsia

(2003) presented an approach to integrate social network analysis and the semantic web.

Yu and Singh (2000) introduced a referral graph comprising agents as weighted nodes

and referrals as weighted edges between participating agents. The graph topology can be

changed over time, for instance after bad experiences agents can change their list of

neighbors and also propagate information about the "bad" agent within the network.

Yolum and Singh (2003) propose a similar approach that enables the study of the

emergence of authorities in self-organizing referral networks. Pujol et al. (2002)

associate reputation of an agent with its degree in a social network graph. Similar to

PageRank in Google, an agent gets a high reputation if it is pointed to by other agents

that also have high reputation. Aberer and Despotovic (2001) analyze earlier transactions

of agents and derive from that the reputation of an agent. Reputation provides a value

that indicates the probability that the agent will cheat. They also presented a design for

trust management using their proprietary decentralized storage method.

 22

2.4 Summary and Conclusions

This chapter presented a few existing groupware, collaborative and peer-to-peer

applications that are related to the community-based organization of peers described in

this dissertation. Next it discussed some of the characteristics of complex, self-

organizing systems which are related to our peer-to-peer network model, specifically the

properties of small-world networks and scale-free networks. Finally, the chapter ended

with an overview of some algorithms and techniques that have the related goals of

distributed information dissemination, distributed searching and trust modeling.

Our work introduces a novel community-based organization of peer-to-peer

networks that retains the flexibility of unstructured peer-to-peer networks and assists in

searching, gossiping and trust. Our gossiping algorithm employs a simple push-pull

operation that exploits community-based link structures. Our technique for searching

also makes use of peer communities to prune the search space, by following the innate

method of searching that humans use in the analogous social network, where queries for

unknown items are asked to �those that know.� Peer-to-peer systems used for

information exchange have either protected peers� anonymity, or required transacting

peers to trust each other implicitly. Both these approaches are vulnerable to attacks by

malicious peers who could abuse the peer-to-peer system to spread viruses, incorrect, or

damaging information. Finally, we associate trust values with Link Weights instead of

links.

CHAPTER 3

MODELING A PEER-TO-PEER NETWORK

3.1 Modeling Peers

The formation and discovery of peer communities depend significantly on how

peers declare and use their common �interests�. In this section, attributes are first

described as a method of declaring interests. A thorough treatment of the subject of peer

links is then provided later in the section.

3.1.1 Interest Attributes

In our model, interests are represented by attributes, which are used to determine

the peer communities in which a particular peer would participate. Attributes can be

either explicitly provided by a peer or implicitly discovered from past queries. For

example, a housewife can express that she is interested in French wines and house

decoration. Such expressions are personal declarations. Also, her repeated web search

queries to find �K-12 education in Arizona� can be used to provide implicit information

about her interests. For the implicit discovery of interest attributes, we assume the

presence of a semantic analyzer that can access browser history, sent-mail and other files

available on a peer�s storage to intelligently deduce the list of tasks for which the peer is

being regularly used. This list forms the list of implicitly derived interests. Examples of

semantic analyzers that could be incorporated into our system with some minor changes

are (Hayes et al., 1986; and Matrouf et al., 1990). Our system design, however, does not

depend on the existence of a semantic analyzer. Therefore, the list of interests can even

be entirely obtained from the owner(s) in an explicit manner (possibly through a number

 24

of iterations). There are of course privacy and security concerns in using such

information, so we divide interests into two classes � personal and claimed.

The full set of attributes for a peer is called personal attributes. However, for

privacy and/or security reasons, all these attributes may not be used to determine

community membership. A client may also not want to reveal some of her personal

attributes because she might not consider them relevant amongst the peers that she

knows. Hence, a peer explicitly makes only a subset of these attributes public, which are

called claimed attributes.

In Fig. 1, I is the universe of all attributes; P is the set of personal attributes; and

C is the set of claimed attributes. Below, we formally define a peer-to-peer community

and its signature based on the attributes of each peer.

Definition 1

Peer-to-Peer Community

The non-empty set N of nodes is a peer-to-peer community iff N has a non-null

signature.

I

P
C

Figure 1. Venn diagram of interest attribute sets for a peer

 25

Definition 2

Signature of a Set of Peers

Let i be a node and Ci be a set that contains attributes claimed by i. Consider a

non-empty set N of nodes. Then the set resulting from the intersection of Ck, for all k ∈ N

is called a signature of the set N.

With these definitions, given any collection of peers, we would be able to tell

whether the collection is a peer-to-peer community or not.

3.1.2 Peer Links

We observe in projects like HITS (Kleinberg, 1998) and Web Communities

(Flake, Lawrence and Giles, 2000) the concept of self-organized communities that form

implicitly based on hypertext links between web pages. The human creators of the web

page explicitly place these links typically in order to point towards web pages with

similar content. This is one of the factors that Internet search engines have exploited to

enhance their search operation.

We draw an analogy from the above research to understand the behavior of peer-

to-peer systems. We find that peers also regularly link to other peers, in the form of

relationships (being present in their address book), or direct connections (being on the

same network), when their human owners share something in common. We assume that

these links are bi-directional communication channels that can be established on an as-

needed basis. In a social network, this is similar to getting in touch with people you

know when you need something. We refer to these end-to-end overlay communication

channels as peer links.

 26

3.1.2.1 The Need for Peer Links. Links are not necessary to form and manage peer-to-

peer communities. However, they are needed to feasibly run low-cost algorithms that are

used for formation and discovery of communities, as it is conceptually and

algorithmically simpler to use the notion of a set of neighbors, which are directly (1-hop)

linked peers, when communicating with other peers.

When node X is born, it needs to have one or more logical neighbors. If it has

three neighbors, A, B, and C, then we say that it has three links, X!A, X!B, and X!C.

Unlike overlay networks used by Distributed Hash Table (DHT) based peer-to-peer

systems, our link based network is not contingent to node names, but to user selected

neighbors. Like in social networks, the more links a node acquires the more successful it

will be in receiving information and searching the peer-to-peer network. It is the

responsibility of each peer to acquire as many neighbors as possible.

First, let us explain a case where links are essential. Suppose a node, belonging to

domain abc.com claims the attribute �baseball�. This node is essentially isolated, unless

it a priori knows about the other members of the baseball community or the other

members of the abc.com community. There is a need for a �seed� to start the community

formation and information search needs.

3.1.2.2 Creating Peer Links. Flooding and querying a central server are two solutions to

the isolation problems; however, the first is expensive and the second violates the self-

configuring tenet of the peer-to-peer model.

A new node X has the following options that solve the isolation problem:

1. Connect to a special bootstrapping node present within each network domain

 27

2. Connect to a peer known to X � a friend / colleague.

For a novice/new node, the first option may be the most appropriate. As X ages, it

finds other nodes and adds these links to improve search speed and information access.

The linkages are bi-directional and similar to friendships in real life, or to http links in

the Web. They are directed by humans.

3.1.3 Link Weights

Peer links are used to compute Link Weights at each peer in the network. Below,

a definition for Link Weights is provided followed by an illustrative example in Fig. 2.

Definition 3

Link Weight

This is the weight calculated for each claimed attribute of a peer V based on the

number of links from V that can reach, after at most one indirection, other peers that

claim the same attribute.

The constraint of at most one indirection is necessary to restrict the maximum

depth up to which peers will be examined since more than two levels deep resulted in an

unacceptably high number of communication messages. See section 4.4.3 for the average

number of peers that are reachable from a peer.

The Link Weight values of a peer can change over time because of the value�s

tight coupling with peer links. All peers are not equal in terms of the number of their

neighbors. Older peers, i.e. peers that have been part of the network longer than others,

are likely to have higher Link Weights because they have more time to accumulate more

neighbors. This is observed in our experiments described in section 5.3.4. In addition to

 28

favoring older peers, higher Link Weights are observed in peers that have popular/

interesting content or useful resources. As peers in the network search for and discover

these content or resources at the peer that owns them, their human users might create a

link to the content/resource owner to avoid subsequent searching. Finally, since peer

links are directed by humans, social aspects, such as the popularity of the peer�s owner,

will contribute to the increase in Link Weight values at a peer.

Link Weight values can conversely be reduced by the removal of links through a

process we call revocation (see section 7.6.1). The removal of links might be a result of

the waning interest in content or resources at a peer, malicious behavior of a peer during

transactions, or simply due to social aspects, such as death, separation, and so on, of the

peer owner. Due to the dynamic nature of peer links, Link Weight values are calculated

at regular intervals decided autonomously by each peer.

Interest Link Weight
Magazine 4
Fiction 18
Technical 6
Biography 23

V V

Interest Link Weight
Magazine 4
Fiction 18
Technical 6
Biography 23

Interest Link Weight
Magazine 4
Fiction 18
Technical 6
Biography 23

Interest Link Weight
Magazine 4
Fiction 18
Technical 6
Biography 23

Interest Link Weight
Magazine 4
Fiction 18
Technical 6
Biography 23

V V

a. Comparing with 1-hop / 2-hop neighbors b. Link Weights for each attribute

Figure 2. Peer V compares its claimed attributes with neighboring peers and then

calculates Link Weight values

 29

As mentioned earlier, this value is very important to help determine the

membership of a peer in a community and rank peers in a community for the purposes of

information dissemination and trust. Although later chapters explain how this value is

used in our algorithms, a summary of the importance of Link Weights is provided in the

following paragraph.

After the community formation algorithm described in chapter 4, each peer

calculates its Link Weights by analyzing the claimed attribute sets that it receives from

neighboring peers. The subsequent community discovery algorithm uses the definition of

community membership, which relies on Link Weight values. A critical part of our

information dissemination algorithm is the selection of special peers to carry out push-

pull gossiping. These peers are selected by virtue of having high Link Weights. During

community-based search query propagation, higher Link Weights of peers responding to

the query indicate that the peers are more likely to have the requested resource. Our trust

model uses Link Weights as an indication of role-based trust. Finally the single iComplex

trust value described in chapter 7 is calculated using Link Weights.

3.2 Peer-to-Peer Network Formation

In this section, two approaches are explained for generating a realistic peer-to-

peer network topology that we used to simulate our algorithms.

3.2.1 Using the Internet Topology

Due to the manual nature of setting up links, we believed that the resulting

network topology would be similar to that of the Internet. In fact, the pre-cursor to the

Internet (Arpanet) was one of the first peer-to-peer networks, with its ability to connect

 30

computers as peers having equal rights in sending and receiving packets. We therefore

wrote a spider program that crawled a subset of the Internet (a pre-specified domain,

such as �asu.edu�) and created a topological map that could be used to calculate various

parameters such as clustering coefficient and power-law exponents. The spider program

started at a user-specified website, requested its HTML content and parsed the HTML

code to extract all the linked websites. It recorded the websites that lay within a pre-

specified domain, such as �asu.edu� and discarded the rest. Thereafter, the spider

recursively visited each website from its recorded list repeating the same steps. By

programming the spider to travel the Internet domain using an Eulerian path, we could

create a map of the web topology where each node was a website and edges represented

a link from one site to another.

Apart from a few changes, like converting the graph from a directed graph to an

undirected graph, the web topology graph that we generated closely resembled a peer-to-

peer network. Websites are analogous to peers; and http links are equivalent to peer

links. The other reason for the close resemblance was the similarity between website

content and a peer�s interest attributes.

Fig. 3 demonstrates the power-law distribution of the frequency (logarithmic X-

axis) Vs the degree (logarithmic Y-axis) in the two Internet topology maps. However,

our calculations for small-world behavior revealed low characteristic path lengths (2.46

and 2.32) and low clustering coefficients (0.28 and 0.32) for asu.edu and umich.edu,

respectively. We attribute this phenomenon to the popular use of increasingly efficient

search engines on the Internet. While a few years ago, a website owner had to place http

links to frequently visited websites on her website so that they could be easily accessible,

 31

contemporary search engines efficiently locate websites so that many website owners do

not even have to link to the websites of their colleagues and friends any more. The

resulting topology graph therefore showed fewer regular links, and calculations for the

clustering coefficient hence revealed low values.

1

10

100

1000

10000

1 10 100 1000 10000

Frequency

D
eg

re
e

a. �asu.edu� domain

1

10

100

1000

10000

1 10 100 1000 10000

D
eg

re
e

Frequency

b. �umich.edu� domain

Figure 3. Power-law distribution of the frequency Vs degree plot for the web

topology graphs

 32

3.2.2 Creating Our Own Peer-to-Peer Network

A peer-to-peer network comprising of peers linking to known peers is analogous

to social networks, and therefore should have a high clustering coefficient to represent

the interconnected social links amongst circles of friends. We needed to provide a

mechanism to guarantee that our peer-to-peer network topology exhibits the properties of

a small-world network and also shows a power-law distribution for frequency versus

degree.

Our next approach involved enforcing certain rules (similar to preferential

attachment) on new peers that wanted to join the peer-to-peer system. We were inspired

by the work of Steyvers and Tenenbaum on semantic networks, and extended the domain

of their model to a peer-to-peer network that involved peers and links.

Fig. 4 (a) indicates what happens if Random Attachment is used to create the

peer-to-peer network, i.e. new nodes join the network by linking to a randomly picked

a. Random Attachment b. Enforced rules

Figure 4. Topology of networks grown up to 100 nodes

 33

existing node. The resulting network resembles a tree instead of a graph. Fig. 4 (b) shows

a peer-to-peer network that has been formed using our enforced rules. The rule-based

network is closer to a realistic topology. A new peer, X, therefore has to follow a two-

step procedure (described below) in order to join a peer-to-peer system.

}X known to peersofset{Let =N (See section 3.1.2), the symbol →℘ means

�connects (links) to�, with probability℘, and ∝℘A degree of node A, which is denoted

as kA. The two-step procedure is:

NAAAX ∈ →
℘

, Step (1) , X selects a node A and connects to it

BXAMAmB →′∈′=∀ 1, Step (2) , X selects d nodes from M�A to link to

where,

AiiA

AAA

AAA

MiiffkMi

dMMM

kMM

∈∝℘′∈

=′⊆′

==

 yprobabilitwith

defined)(globally thatsuch

A}, of neighbors ofset {

Fig. 5 (a) shows the clustering coefficient (CC) and the characteristic path length

(PL) for various network sizes generated with an initial seed of 2 nodes. The suffixes P

and R indicate peer-to-peer and random networks respectively. Fig. 5 (b) shows the

power-law distribution in a frequency (logarithmic X-axis) Vs degree (logarithmic Y-

axis) plot of our rules mechanism compared with the well-known �Barabasi� technique.

The network size was 1000 nodes grown from 2 seed nodes.

 34

3.3 Summary

Formation and discovery of peer communities are significantly dependent on how

peers declare and use their common �interests�. This chapter begins by defining

attributes as a method of declaring interests, and then it describes a bidirectional, end-to-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

25 100 200 500 1000 2000 5000 1000

Total Network size (from 2 seed nodes)

PL-R
CC-P
PL-P
CC-R

a. Small-world properties of resulting peer-to-peer network

1

10

100

1000

1 10 100 1000

Rules

Barabasi (uniform
probability)

Frequency

D
eg

re
e

b. Scale-free property of resulting peer-to-peer network

Figure 5. Properties of the resulting peer-to-peer network created by enforcing rules

 35

end communication channel called peer links. More importantly, this chapter provides a

set of rules for peers to join a peer-to-peer network such that the network will always

exhibit certain properties like small world behavior and power-law distribution. We use

these rules to build a peer-to-peer network simulator so that our simulations mirror real

peers as closely as possible.

CHAPTER 4

FORMATION AND DISCOVERY OF PEER COMMUNITIES

4.1 Motivation

Psychologists have long shown that people have an affiliation motive (Murray,

1938) and a need for information about the world around us (Festinger, 1950). These are

some of the instincts that have driven the formation of human groups. This tradition of

group forming is not alien to computer science and we witness examples of it in Usenet

groups, web communities (Flake, Lawrence and Giles, 2000), Yahoo Groups, chat rooms

and so on.

Almost all present-day groups require some central control or a central authority

through which advertisements can be made. In contrast to this, peer-to-peer systems are

defined to be completely de-centralized and can also be dynamic. The popularity of

schemes to form communities and associations on the web leads to the use of the peer-to-

peer system structure for realization of underlying community structures. Thus peer-to-

peer communities are not only a natural extension for arranging distributed systems, but

also to enhance the capabilities of each member.

To enable regular searching as well as community-based searching, we must be

able to efficiently discover communities, that is, we need searches for community

members. This is somewhat complicated by the fact that communities are implicit, self-

organizing, dynamic and constantly changing�forming, or breaking down due to

changes in the peers.

 37

This chapter is targeted to discovery of communities on the fly to enable efficient

intra-community information dissemination as well as inter-community searching. To

this end we have studied the community formation characteristics using simulations of

large communities and found characteristics that can be exploited to perform discovery

and searching. We show that this discovery does not require extensive computation or

communication on the part of a peer.

Note that searching and information dissemination is not the focus of this chapter,

they are the next step after community discovery algorithms are implemented.

4.2 Challenges for Formation and Discovery

In traditional centralized approaches, a server would be charged with maintaining

a record of the interest attributes of each of its clients. New clients would merely register

their interests at the server, which would periodically execute a matching algorithm to

group peers that share common interests to form communities. This list of communities

could be easily obtained from the server at any time. In this way, communities would be

formed and clients would know their community membership in deterministic time.

Existing examples of such systems are matchmaking servers and dating websites. As a

bonus of a centralized approach, clients could also ask the server for a list of all the

available communities without incurring any extra computational cost for server-side

processing. Alternatively, a server would act as a central directory that lists all the

available communities. New clients would then have to browse or search the directory

for communities to join; or they could form a new community. A few other examples of

these systems can be found in Internet chat sites (Yahoo Chat; MSN Chat; and ICQ).

 38

In a distributed environment, such as a peer-to-peer network that lacks a central

authority, this simple formation and discovery problem becomes much more complex. In

order to compensate for the server, the cost of communication will be higher. Peers will

need to exchange their interest attributes with each other for the purpose of forming

communities and deriving their community membership. In addition, it is unlikely that

any bonus information that was previously available for free due to the centralized

approach will be similarly obtained without executing another round of communication.

We propose a community formation and discovery algorithm that works without

any central authority and optimizes the cost of communication. Our algorithms are

autonomous procedures that are executed asynchronously by each peer. Through a

simple exchange of interest attributes, we demonstrate how communities can be formed.

Further, without any additional communication, we show how peers can also discover

exactly to which communities they belong. The algorithm for discovering communities

in which a peer is not a member is left for chapter 6.

4.3 Forming Communities

The community formation algorithm assists in the establishment of community

relationships amongst peers that share common interest attributes.

Normally, a network of peers can exchange or advertise their interest attributes

with their neighbors in order to find peers with whom community relationships can be

formed. There are two mechanisms here: an active approach and a passive approach. In

the active approach, a peer actively polls peers in its neighborhood2 for their claimed

2 The neighborhood of a peer includes 1-hop and 2-hop neighbors.

 39

interest attributes (receive phase) while simultaneously sending its own claimed

attributes to them (send phase). On the other hand, if a passive approach is adopted, a

peer merely advertises its claimed interest attributes on its website and relies on the

active approaches of other peers for the exchange. The number of messages required

during both send and receive phases for the active approach is О(n2), while for the

passive approach, the number of messages during the send phase is Ø and during the

receive phase it is ≤ О(n2). We use both these approaches in our community formation

algorithm. The active approach occurs as an initial, periodically (daily, or weekly, etc.)

repeatable exchange; and the passive approach exists continually between active

exchanges. Over time the communities formed will become out dated as peers change

their interest attributes. Therefore, we propose that the formation algorithm be repeated

periodically. In between these repetitions, we propose that a peer advertises its interest

attributes using its website, shared network drive, or a web service. Due to the

asynchronous nature of our algorithm, in a large network of peers there will always be

some peers in an active mode, at any given time, which can take advantage of these

advertisements.

The active exchange of interest attributes is not required in order to form

communities. In fact, if all peers only operated in passive mode and tried to form

communities based on their claimed attributes, we could significantly reduce the cost of

communication. However, it is possible that a peer-to-peer community with signature S

might exist. As a result, a peer that has S ⊆ personal attribute set and S ⊄ claimed

attribute set, will not be able to join this community and avail of the benefits until it

claims all the attributes of set S.

 40

Peers, therefore, need to expose (escalate from the personal list to the claimed

list) as many attributes as possible to join the maximum number communities. This

process is called attribute escalation, and can only be achieved by establishing active

communication with other peers to obtain their claimed attribute sets. When no more

attributes are being �escalated� by the peers, we say that the communication has

achieved its goal and the collection of peers is stable.

Two peers that are linked (shown by arrow) are illustrated in Fig. 6. Note the

change in the claimed attributes of Peer Q it received claimed attributes from Peer P.

4.3.1 Attribute Escalation Algorithm

Provided below is an algorithm for attribute escalations:

1. Each peer P communicates with all of peers in its neighborhood. The

communication involves a transmission of the claimed attribute set by P.

2. Each peer Q receiving the claimed attribute set from its links will find the

intersection of the set with its own personal attribute set.

3. If an element is present in the intersection set and absent from the claimed

attribute set of Q, then it is added to the claimed attribute set of Q.

The reason that transmission occurs only within the neighborhood is explained in

section 4.4.3. Further, our simulations have shown that by using only one level of

indirection, peers could participate in an average of eight communities. Probing to two

levels of indirection is unnecessary, as it did not increase the average number of

communities in which a peer could participate.

 41

Note that the attribute escalation algorithm automatically escalates attributes from

the personal set to the claimed set. This process may not be desired in practice and a

human may be consulted before this escalation is performed. For this dissertation,

automatic escalation is assumed.

The above procedure makes a change to each peer and therefore changes the

communities identified. Since these changes might occur frequently with peers being

Peer P

CLAIMED:
Technical,
Biography

PERSONAL:

Magazine,
Fiction,

Technical,
Biography

Peer Q

CLAIMED:
History

PERSONAL:
Philosophy,

History,
Technical,

Law

a. Before any communication and adjustment

Peer P

CLAIMED:
Technical,
Biography

PERSONAL:

Magazine,
Fiction,

Technical,
Biography

Peer Q

CLAIMED:
History,

Technical

PERSONAL:
Philosophy,

History,
Technical,

Law

b. After communication messages and adjustment

Figure 6. Procedure to escalate attributes (�Technical� in this case)

 42

created, destroyed, or modified, we were concerned about the stability of the attribute

escalation technique.

4.3.2 Experimental Evaluation

We conducted simulations to measure how many communication steps our

algorithm requires to identify all the possible communities. In this simulation, we

generated a peer-to-peer network using our generation method described in the previous

section. The network consisted of 10,000 peers. Each peer was randomly assigned a set

of personal attributes of random size but with at least one element. To simplify the

process, the attributes were implemented as different letters of the alphabet. Thus we had

26 possible attributes (A-Z). Next, from the personal attribute set of each, we randomly

selected some attributes and made these the claimed attributes of that node.

On the average, we found each simulated peer contained 13 personal attributes

and 6 claimed attributes; and was connected to 66 peers. We found that the average

number of claimed attributes per peer stabilized after one iteration of the attribute

0
2
4
6
8

10
12
14

0 1 2

Number of Communication Steps

A
vg

. #
 C

la
im

 A
ttr

ib
ut

es

Figure 7. Stabilization of Attribute Escalations

 43

escalation algorithm (see Fig 7). This means that the number of times peers need to

communicate before the average number of claimed attributes for all peers becomes

constant is just once. Further, the computation at each peer is a trivial set algebra. Hence,

each new arrangement of a collection of peers is expected to stabilize quickly and with

little overhead.

4.4 Discovery of Community Membership

Discovery in the context of peer-to-peer communities usually indicates one of the

following: discovery of the communities in which the peer is automatically a member, or

discovery of remote communities that a peer might want to join or use. As indicated at

the beginning of this chapter, the focus is on the former.

After the escalation of attributes, a peer has only facilitated the formation of

communities. It still is not aware of its community memberships. At this stage, a peer

knows two things about its interest attributes: the list of its claimed attributes, and the

subset of the claimed attributes that were escalated. A peer can assume to be a member

of communities whose signatures are equal to the attributes that have been recently

escalated. This assumption makes sense because the only reason that the attributes were

escalated was due to communication with a known peer (directly or indirectly known)

that shares the same interest. However, the attributes of a peer that had already been

claimed before the escalation process might or might not have been common with other

known peers. Therefore, the peer cannot assume to be a member of a community that is

based on these un-escalated claimed attributes. After analyzing the received claimed

interest attribute sets, a peer will be able to discover two kinds of communities:

 44

1. The communities that peers are a part of by virtue of their common claimed

attributes

2. The communities in which peers become members by virtue of the claimed

attributes that were escalated

The analysis of the claimed attribute sets received allows a peer to compute its

Link Weights (see section 3.1.3 for definition). As stated earlier, link weights help

determine the membership of a peer in a community.

Definition 4

Peer-to-Peer Community Membership

A node i, with claimed attribute set Ci, is a member of a peer-to-peer community,

N, with signature set S if every claimed attribute of the intersection set I = Ci ∩ S has a

link weight that is greater than the globally predetermined threshold T.

By including threshold T in the definition of membership, we can have various

degrees of peer-to-peer communities. For instance, if the threshold is kept very low, then

a community will be formed even with a small number of peers that share a common

interest. If instead, it is desired that peer communities only form when there are many

peers that share a common interest, the threshold can be set to a higher value. Although

not required to be pre-set, the threshold value would give the network of peers a uniform

behavior if all peers agreed upon its value.

 45

4.4.1 Community Discovery Algorithm

The procedural pseudo-code for our membership discovery is shown in Table 1.

Table 1

Community Discovery Algorithm

Line Pseudo-Code

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

MEMBERSHIP-DISCOVERY (peer)

/* executes at each peer simultaneously */

 foreach claimed attributes
 compute link weight
 end-for
 foreach subset S of claimed attributes set
 foreach attribute in S
 if link weight > T then
 check next attribute

 else
 break-for
 /* try another subset */

 end-for
 if no break-for was executed
 peer is member of community with signature S

 end-for

4.4.2 Experimental Evaluation

We measure the effectiveness of our algorithm by the difference in the number of

peer-to-peer communities, in which a peer discovers membership.

 46

We ran simulations on peer networks of two different sizes: one with 1,000 peers:

and the other with 10,000 peers. The maximum number of personal attributes we allowed

for each peer was 20, and a peer was explicitly placed into only one group, as described

earlier. For both simulations, we set the link threshold to 40%.

The graphs shown in Fig. 8 and 9 are the results of our simulations. They

demonstrate the performance of using the claimed attribute set and the link threshold for

1000 nodes 10000 nodes

Figure 9. Number of communities discovered by each peer

0%

20%

40%

60%

80%

100%

1000 10000

Number of nodes

%
 C

om
m

un
iti

es

di
sc

ov
er

ed After adjustments

Before
adjustments

Figure 8. Percentage of communities discovered (average over all peers)

 47

the discovery of peer-to-peer communities. The graph in Fig. 8 shows the average

number of communities discovered by all peers before and after executing the

Community Discovery algorithm. Fig. 8 illustrates that the majority of peers have

discovered communities, other than the ones, in which they were explicitly placed. The

graphs in Fig. 9 show the number of communities discovered by the peers. The inner

gray area is before and the outer black area is after the Community Discovery algorithm.

The circles have values 0, 5, 10, and 15 from inside to outside. Our simulations have

shown that before any communication, the average number of communities known to a

peer was 0.5. This number increases to an average of 8.5 after the execution of the

membership procedure at each peer.

4.4.3 Average Number of Peers Reachable from a Peer

We conducted experiments with 1,000 peers and 10,000 peers to traverse the

outgoing links from each peer. We then counted the number of peers that could be

reached after going to the direct neighbors (Level-1), in-direct neighbors after one

indirection (Level-2), and in-direct neighbors after two indirections (Level-3). Table 2

provides the values obtained by our experiment.

Table 2

Number of peers reached in various levels (For 10,000 peers)

Max. Level traversed Number peers reached

Level-1 65.8141

Level-2 4380.7874

Level-3 18929389.64

 48

The graph in Fig. 9 was plotted using a logarithmic Y-axis. It shows how the

number of peers that can be reached increases with greater depth.

4.5 Factors Determining the Existence of Communities

Given a set V of peer nodes, each having a set of personal interest attributes as a

subset of the universal set of all possible interest attributes I, can we say with some

certainty that the nodes will form into peer-to-peer communities after the attribute

escalation process? Note that set I depends on the particular context of the peer-to-peer

system. For instance in the peer-to-peer digital library, I could be the set of all possible

genres of books, in another context, I could be the set of all known research areas within

Computer Science.

Consider a peer VVi ∈ , where { } { }NiVVVV N ,,2,1,,,, 21 KK ∈= is a set of

peer nodes. The set of personal interest attributes of iV is IPi ⊆ , where

1

102

104

106

108

1010

1012

1014

1016

1 2 3 4

Level of Neighbors

N
um

be
r o

f P
ee

rs

Figure 10. An exponential increase in the number of peers that can be reached

 49

{ }attributesinterest all=I , and the set of claimed interest attributes is ii PC ⊆ , and

iii CPP −=′ is the set of unclaimed attributes.

During the attribute escalation process, every peer sends its claimed attribute set

to all of its 1-hop and 2-hop neighbors.

Lets say that Nm ≤ is the number of 1-hop and 2-hop neighbors of iV , then eq.

(1) gives the set of all claimed attributes received at iV after the attribute escalation.

U
m

jij
ji CC

0,

�
=≠

= , Nj ≤≤0 (1)

In addition, eq. (2.2) will give iV the set of interest attributes that it shares with

other peers.

() ()iiiii PCCC ′∩∪∩=Ψ �� (2)

()iiii PCC ′∪∩=Ψ∴ � (2.1)

iii PC ∩=Ψ∴ � (2.2)

Since we define communities as groups of peers that have common interests, eq.

(2.2) also indicates the set of communities in which a peer is a member. For the sake of

simplicity we assume that every common interest attribute indicates a separate

community.

Therefore the factors that determine whether a particular peer is a member of a

community are:

1. The number of 1-hop and 2-hop neighbors (m)

2. The number of interest attributes available (I)

 50

3. The number of interest attributes in the personal set (P)

4. The number of interest attributes in the claimed set (C)

Let us analyze the various factors in detail.

The first factor relates to the links in a peer-to-peer network. A peer having more

1-hop and 2-hop neighbors is less likely to obtain an empty C� after escalations. The

worse case scenario occurs when all m neighboring peers have empty claimed attribute

sets.

The probability that the claimed attribute set of a peer is empty depends on set P.

The worse case scenario (high probability) can occur when a peer declares no personal

interest attributes; therefore the claimed attribute set will also be empty. In addition,

when set I is very large, and the personal attribute sets of the peers in the network are

0%
10%

20%
30%

40%

50%
60%

70%
80%

90%

100%

0% 20% 40% 60% 80% 100%

% |P| / |I|

%
 u

ni
qu

e
at

tr
ib

ut
es

N=100, m=4
N=100, m=6

N=200, m=6
N=100,000, m=3

N=5,000, m=3

0%
10%

20%
30%

0% 2% 4% 6%

Figure 11. Percentage of interest attributes not common with any peer as a factor of

|P| / |I|

 51

very small, Ψ is more likely to be Ø. It would be interesting to study the relation

between the percentages of unique attributes (not contributing to community formation)

vs. the ratio of P to I . Fig. 11 shows this relation.

In smaller peer-to-peer networks (N≤200), we observe that more than 50% of

personal interest attributes remain unique, i.e. they do not contribute to community

formation, when the ratio of P to I is below 40% and m=4. Increasing the number of

neighbors (m=6) and the number of nodes (N=200) in the network reduces the percentage

of unique attributes to 4% even when the ratio of P to I is lowered to 20%.

However, in larger peer-to-peer networks (N≤100,000), less than 30% of personal

interest attributes remain unique even with a |P| to |I| ratio below 6% and m=3.

Therefore, with a higher number of nodes in the network, peers will share more of their

personal interest attributes with some other peers even though each peer�s list of personal

interests is only a small fraction of the total number of interest attributes available.

4.6 Summary

This chapter showed that the attribute based clustering of peers can be made to

work, by defining an overlay network, consisting of peer links. It demonstrated that the

peer formation algorithm stabilizes after just one iteration of the escalation technique.

Additionally, it introduced an efficient community discovery procedure using weights

and threshold. Our simulations of the discovery procedure have confirmed that peers can

quickly discover numerous memberships in different peer-to-peer communities using

very little computation and communication messages.

CHAPTER 5

INFORMATION DISSEMINATION USING PEER COMMUNITIES

5.1 Motivation

Peer-to-peer communities aid in the better dissemination of useful information

amongst peers. For example, suppose node X belongs to a person interested in

Amazonian Biological Catapults (ABC). After X declares this interest, it becomes a

member of the community of ABC enthusiasts. Henceforth, all information X wants to

share can be placed in a public directory and will be readable/searchable by all members

of ABC. This concept can be extended to discover resources, physical devices, and

network components. It also has some interesting security and access control issues

(including trust management). The above example is interesting in the context of peer

communities with no overlapping interests and is especially applicable in applications

that follow the publish-subscribe-notify model (Gummadi and Hohlt, 2000).

After we run our algorithms detailed in the earlier chapter that uses interest

attributes for assisting in the formation of communities, peers will discover the

communities that they participate in. However, since interest attributes are constantly

changing values, the formation of communities needs to occur on a regular basis to keep

the peer-to-peer system up-to-date and to keep the peers subscribed to the most suitable,

existing communities. Then, again, a periodic increase in communication messages

might not be suitable for low bandwidth networks, as regular communication will be

affected by this increased traffic. Therefore, instead, we opt for Distributed Discovery

followed by push-pull Peer-to-Peer Gossiping.

 53

5.2 Challenges for Information Dissemination

Prior approaches for information dissemination within a peer-to-peer network

include flooding or hop-limited broadcast. Lamport and Chandy�s distributed snapshot

algorithm (1985) is not relevant to solve this problem because of two reasons:

1. The Lamport-Chandy algorithm makes an assumption of FIFO channels. This

might not be true in our peer-to-peer network due to the use of overlay links.

2. Termination detection of the Lamport-Chandy algorithm requires knowledge of

the total number of nodes in the distributed system, and these nodes have to

remain alive throughout the execution of the algorithm. This is not practical in a

dynamic peer-to-peer network where peers can appear and disappear at random.

Unlike these approaches, our technique begins with a discovery phase to gather

data on peers that would be interested in receiving certain information. During the

discovery phase certain properties of the peer-to-peer community are discovered. These

properties include the approximate number of members and the information about the

member peers. Since peers can go offline at anytime, the discovery phase cannot depend

on the peers of a community to be online.

For undirected intra-community information dissemination, we propose Peer-to-

Peer Gossiping. This is a push-pull approach that is resilient to peer failures and does not

critically depend on any single peer or message. It involves communication (gossiping)

amongst selected peers of a community (called seers) to achieve an objective that is

similar to the case of rumor spreading (Karp et al., 2000). The selection of seers is based

on the discovered data. As long as the discovered data is available and recent, the push

 54

phase can be repeated numerous times with new information. Whenever required, a peer

can retrieve the information from a nearby seer via a pull phase. The two major

differences between our method and rumor spreading are:

1. The lack of prior knowledge about the number of peers that exist

2. The lack of random selection of peers

In this chapter, our technique for peer-to-peer gossiping is described. It shows

that our Distributed Discovery is a low overhead, simple protocol that identifies seers,

and is easy to terminate. Our proposed algorithm for the push phase makes gossip

information available to a large percentage of interested peers within a very short number

of links. In addition, these two techniques facilitate the management of quickly changing

community structures via undirected intra-community communication. Both discovery

and gossiping techniques are efficient, de-centralized, robust and highly scalable.

5.3 Distributed Discovery of Seers

The primary goal of this algorithm is to gather information about the peer

members of a community in order to select the peers that will become seers. As an

intentional offshoot, this algorithm also gathers information about the community, such

as the approximate number of online members, and the union of all the sets of claimed

attributes that belong to the peer members.

5.3.1 Peer Involvement and Seers

Peers have involvement values associated with every community in which it is a

member. Involvement is proportional to the number of peers in the neighborhood that

claim the signature attributes of a particular community. Therefore peers with a higher

 55

value of involvement associated with a community C have more peers within their

neighborhood that are also members of C. We use the term seers when referring to these

peers. Seers of a community are known directly or indirectly to most peer members of

that community. This also means that information stored at the seers will be available to

a large percentage of peers within the community

Definition 5

Peer Involvement

The average of link weights for elements of the intersection set I = Ci ∩ S is

directly proportional to the involvement of node i which has the claimed attribute set Ci

in a peer-to-peer community with signature S.

5.3.2 Unbound Distributed Discovery

We employ a vector (Fig. 12), which is sent to every peer j in its neighborhood

by the peer initiator (IS) of community S; such that S ⊆ claimed attribute set of j. Any

peer can be the initiating peer. To guarantee that every community has at least one

initiator, we programmed every peer to attempt to become the initiator of its

communities. A globally unique vector ID can alert peers to drop vectors with higher IDs

and inform the losing initiator, thereby ensuring that only the vector with the lowest ID

Vector
ID

Peer
ID

Peer
Involvement … … …

Figure 12. Distributed Discovery vector format

 56

survives. This also means that in the end, all initiators, except one, will lose their status

as the initiators of the algorithm.

Table 3

Algorithm for Unbound Distributed Discovery (at Initiator)

Line Pseudo-Code

1.

2.

3.

4.

5.

6.

7.

8.

DISTRIBUTED-DISCOVERY-AT-INITIATOR

 /* executes at the initiator */

 Create vector ‘v’ for community ‘P’
 Insert my information
 Send ‘v’ to direct neighbors claiming ‘P’
 Send ‘v’ to 2nd-degree neighbors claiming ‘P’
 /* Wait till frequency peaks and then drops */

 Wait to receive end messages or loss of status message

Eventually, the collective traversals by the copies of the surviving vector will

ensure that no peer is visited twice, thereby discovering information from all members of

the community S in deterministic time. Every peer that receives the vector appends its

information to the vector and sends copies of the vector to its neighbors by using the

same criteria as the initiating peer. With a community size of n peers, a total of O(n)

vectors travel through the peer-to-peer network. The peers that receive the vector and

have no neighbors that have yet to receive the vector construct an end message with the

vector and send it to the initiating peer, whose identity can be obtained from the first

element of the vector. Table 3 lists the algorithm for Unbound Distributed Discovery

executed at the initiator and Table 4 lists the algorithm executed at receiving peers.

 57

Table 4

Algorithm for Unbound Distributed Discovery (at Receiving Peer)

Line Pseudo-Code

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

DISTRIBUTED-DISCOVERY-AT-RECV-PEER

 /* executes at each receiving peer */

 Receive vector ‘v’
 If I have already received ‘v’
 Send NACK to sender of the ‘v’
 End-prog
 Else
 Send ACK to sender of the ‘v’
 End-if
 Insert my information
 List neighbors (up to 2-levels) claiming ‘P’
 Remove sender of ‘v’ from list
 If list has peer identities
 Foreach peer in list
 Send ‘v’ to peer
 Receive acknowledgement from peer
 End-for
 Else
 /* This means I am at the end */

 Create end message with ‘v’
 Send to Initiator
 End-prog

 58

23.

24.

25.

26.

27.

28.

 End-if
 If NACK received from all peers
 /* This means I am at the end */

 Create end message with ‘v’
 Send to Initiator
 End-if

The initiating peer waits a certain amount of time to receive end messages. The

union of all end messages provides information about the members of community S to

the initiator peer IS. Since all peers know the identity of the IS, they can obtain this

information in a deterministic time if needed. This leaves one question unanswered: how

can the waiting period for IS be set?

In our experiments, we found that the initiating peer received end messages with

the frequency graph shown in Fig. 13. The graph shows the number of end messages that

the initiators of two separate communities received. The network size was 1000 nodes.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12

Time

Community A
Community B

Point A

t

Figure 13. Frequency of end-message arrival at the initiator

 59

20% of random peers were made to fail. Therefore, by making the initiating peer wait t

cycles after the frequency drops to zero (Point A), most of the end messages can be

collected. Here, t is calculated as the time it takes for the frequency to reach its peak

from zero. If more messages arrive during this wait time, Point A is reset and the value t

is recalculated for the new peak frequency.

5.3.3 Hop-bound Distributed Discovery

For communities that are extremely large, the Distributed Discovery algorithm

will require a long time3 to conclude. Therefore the initiator will have to remain online

for a long time to receive incoming vectors. To overcome this drawback, we propose an

alternative hop-bound Distributed Discovery that works by sending a maximum hop

count (h) value, along with the vector, so that a sub-set of the community can be

discovered. The hop-count h can be set based on the initiator�s ability to wait. At a later

3 At most)(log nO m for a community with n peers each having an average of m neighbors.

0%

20%

40%

60%

80%

100%

5 6 7 8 9 10 15 20

TTL value

%
 C

om
m

un
ity

 d
is

co
ve

re
d

Community A

Community B

Figure 14. Percentage of the community discovered as the value of hop count (TTL

value) is increased

 60

stage, a merging algorithm can be executed to combine various sub-sets into one

community. Fig. 14 shows the increasing percentage of the community discovered, as the

value of hop count is increased. Note the linear behavior of the hop-bound distributed

discovery. The test was conducted on a network with 4,500 nodes.

The merging algorithm can be executed as a low priority activity. It is not

essential to the operation of algorithms, such as community-based search. That being

said, the merging algorithm helps structure the peer-to-peer network so that the search

algorithm works more efficiently. Following is the construct of the merging algorithm:

Case 1: There exists more than one initiator within h hops.

If the initiators have neighbors within or beyond h hops, then by virtue of the

Distributed Discovery algorithm, the vector with the lower identification number

survives. Therefore only one peer will remain as initiator until termination. The ousted

initiator will know the identity of the extant initiator. All the results that are sent to the

ousted initiator are forwarded to the extant initiator of the community.

Case 2: There exists more than one initiator beyond h hops.

If the end vectors received by the initiator indicate that the hop count had been

reached, then there is a possibility that there are potential community members beyond h

who might have been involved in their own hop-based discovery. The initiator therefore

sends a message to the peers that sent the end vectors requesting them to obtain the

identity of the initiator from their neighbors that were not involved in the current

discovery. The initiator with the lowest peer identification value takes over as the new

initiator of the merged community. However if no such initiator was found, then this

 61

operation of locating an initiator beyond h will be repeated periodically so that

eventually a merge operation takes place.

Figure 15. Two cases that might occur during a hop-bound distributed discovery

Fig. 15 portrays the above two cases. The large ellipse that encloses everything

indicates the actual size of a community (h=∞). The smaller ellipses within indicate sub-

sets of the community (h∈N, where N is the set of natural numbers) that are discovered.

Peers (dark gray circles) and their links (connecting edges) are shown in the figure.

Initiating peers are marked with concentric circles.

5.3.4 Distribution of “Seer” Status amongst Peers

In our experiments we found that older peers, i.e. peers that have been part of the

network for a longer time, are more likely to become seers of their communities. We

attribute this to the fact that older peers have had more time to accumulate more links.

Furthermore, when older peers are picked as seers by the initiator of the Distributed

Discovery, their Link Weights are amongst the highest when compared to the Link

Weights of the other seers.

 h

 h

Case 1

Case 2

 62

Fig. 16 plots the peers that have been selected as seers due to their high Link

Weights. Fig. 16 (a) is from experiments on a 1,000 node network and Fig. 16 (b) is from

experiments on a 5,000 node network. The X-axis is the Rank in the Seer List. Seers with

higher Link Weights are closer to the top of the list and have lower rank values. The Y-

axis lists the peer id from 0 to N-1. Older peers have lower peer id values. In both the

0
100
200
300
400
500
600
700
800
900

1000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Rank in the Seer List

Pe
er

 ID

(a) 1,000 node network

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 11 21 31 41 51 61 71 81 91 101 111

Rank in the Seer List

Pe
er

 ID

(b) 5,000 node network

Figure 16. Distribution of �Seer� status amongst peers

 63

graphs, note the clustering of points to the top left corner. This is because older peers are

often selected as seers; and in the list of seers of a community, older peers usually have

the highest Link Weights.

5.3.5 Obtaining Bloom Filter Summaries

Bloom filters (Bloom, 1970) are compact data structures that probabilistically

represent the elements of a set. They support queries of the form, �Is X an element of the

represented set?� and have been used in a variety of ways (Gribble et al., 2000; Gribble

et al., 2001; Hodes et al., 1999; and Kubiatowicz et al., 2000).

We extend our proposed Distributed Discovery protocol further by gathering

Bloom filter summaries from each participating peer. Each peer that receives the vector

creates its own Bloom Filter (see Table 5 for algorithm) and merges it using a simple

bitwise-OR into the existing filter (see Table 6 for algorithm). After the end messages are

received, the initiator merges all the filters, forming, a Bloom Filter that represents a

compact summary of the attributes claimed by the peer members of a particular

community.

In order to reduce the rate of false positives that result due to the probabilistic

nature of these data structures, we chose k=8 hash functions, and set the Bloom Filter

size to m=2048 bits. Based on formula (3) (described in Fan et al., 1998, and Ripeanu

and Iamnitchi, 2001), we get perr ≈ 1.E-05 for n=70 possible claimed attributes.

k

m
kn

err ep

−≈

−
1 (false positives) (3)

 64

The reasons for this modification are justified in chapter 6 where we employ the

Bloom Filter for a Community-Based Search algorithm.

Table 5

Algorithm for Constructing a Bloom Filter

Line Pseudo-Code

1.

2.

3.

4.

5.

6.

7.

8.

CONSTRUCT-BLOOM-FILTER

 /* executes at each peer */

 bloomFilter = new bool[m] initialized to false
 foreach attribute in Claimed Attribute List
 foreach hashFunction hi
 bloomFilter[hi(attribute)] = true
 end-for
 end-for

Table 6

Algorithm for Merging Bloom Filters

Line Pseudo-Code

1.

2.

3.

4.

5.

6.

MERGE-BLOOM-FILTERS

 /* executes at each peer on arrival of new vector */

 mergedFilter = new bool[m] initialized to false
 foreach bFilter in List of Bloom Filters to merge
 foreach bElement in bFilter
 i = bloomFilter.IndexOf(boolElement)

 65

7.

8.

9.

 mergedFilter[i] = mergedFilter[i] bit-OR bElement
 end-for
 end-for

5.4 Push-Pull Gossiping

As indicated earlier, our algorithm utilizes the seers within a community to carry

the information or updates, so that it will be available to most peer members.

At the end of the Distributed Discovery algorithm, the initiator knows the

involvement values of each peer member of the community. The initiator then creates a

set of seers by selecting the peers that have the highest involvement values. By the

definition of involvement, the peers in this set have more community members in their

neighborhood when compared to other neighborhoods of peers that are not in the set.

We show that by correctly choosing the size of the seer set, the majority of the

community members will lie within the neighborhood of at least one peer from the set.

Therefore any information that is sent to the initiator can be multicast to the members of

the seers set so that it can be available (if required) to the majority of community

members, within their neighborhoods.

We conducted experiments on three different peer-to-peer networks to determine

the behavior of our push algorithm. The initiator selected X% of the peer members with

the highest involvement values as seers. Then it sent some information to these seers

(push) with the hope that this information will be available to Y% of the remaining

community members within 2 hops. In Fig. 17, the relationship between X and Y is

shown for three different network sizes (1000, 5000, and 10000 nodes). The values

 66

provide the average of two tests conducted on all the communities within those

networks.

On the average, we found that pushing information out to only 5%-10% of

specially selected community members (seers) makes that information accessible (via a

pull operation) to approximately 80% (or more) of the remaining members within their

own neighborhoods.

5.5 Summary

This chapter presented a novel form of undirected intra-community

communication using two phases, push and pull, that are preceded by a Distributed

Discovery operation. Combined with the distributed discovery of seers, both the push

and pull phases help with information dissemination within the community. The

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10 15 25
X% of highly involved peers

Y%
 o

f m
em

be
rs

 fr
om

 n
ei

gh
bo

rh
oo

d

1000
5000
10000

Figure 17. Performance of our push-pull gossiping technique

 67

Distributed Discovery algorithm involves gathering information on peer members of a

community. A dynamic scheme was provided to determine a termination point for this

algorithm.

With the information gleaned from the Distributed Discovery, peers can execute

our gossiping protocol using the push-pull phases. We ran experiments to show that

pushing the information to only a small number of specially chosen peers allowed a large

percentage of peer members of a community to obtain (pull) the gossip information from

within their neighborhoods.

CHAPTER 6

INFORMATION SEARCH USING PEER COMMUNITIES

6.1 Motivation

By far, one of the biggest challenges of peer-to-peer systems is the ability to

locate information like files or resources. Centralized searching (as used by Internet

search engines such as Google) has the downside that the central authority controls the

indexing and presentation of the information. Peer-to-peer searching allows anyone to

publish information. Searching involves cooperatively passing a query message until a

peer that published the desired information is found. As a result, peer-to-peer searching

reacts to dynamic changes much more quickly than centralized searching. This chapter

briefly describes the mechanics of our search technique and provides some comparisons

with known search algorithms.

If the Computer Science (CS) and Medical (M) communities were disjoint, then

the search operations for medical information performed by a node that belonged to the

community CS would not produce any results. However, if the communities were linked

at some point (see Fig. 18), lets say Q (Q belongs to both communities), then the medical

information would be found, but at a great search expense, since, on the average, half of

the community CS would be searched before a node from the community M is found.

To mitigate such problems, we need a community based query propagation

method. Thus, to provide efficient searching, it is better to search for one or more target

communities, irrespective of the current membership of the searching node.

 69

In Fig. 18, the vertices represent peers and edges represent end-to-end

connections between peers. The closely connected collection of peers to the left and the

similar but smaller collection to the right are two separate communities that are linked by

a common peer.

6.2 Challenges for Information Search

Without a central server to index the content of peers, searching for information

in peer-to-peer systems becomes a potentially costly operation. The lack of a central

regulation also requires more innovative search techniques to tackle the scale and

irregularity. The goal is to bring down the cost of searching in terms of number of

hops/messages while still covering the largest possible number of peers in the system.

This is somewhat complicated by the fact that communities are implicit, self-organizing,

dynamic and constantly changing�forming, or breaking down due to changes in the

peers. We also needed to compare the effectiveness of our search technique with other

known peer-to-peer search algorithms. For this, we created a parameter that measured the

quality of the results received in response to a search query.

Figure 18. Example of peer communities linked by a common peer

 70

6.3 Constructing the Search Query

Any peer that needs to search the peer-to-peer network constructs a three-part

search query containing:

1. The identity of the peer creating the query

2. The actual query for an item

3. A list of meta-information that describe the item

In an interest-based peer-to-peer network, such as our digital library (Section

1.2), a peer might use interest attributes as meta-information to a query. For instance, if

the query is for �books about Vampires,� the list of meta-information might include

attributes such as, �Twentieth century,� �Bram Stoker,� and �European authors.�

A solution to a query could mean that the peer either owns the requested books or

can provide information about the peer that owns the requested books.

6.4 Processing the Query

To facilitate the search operation, the querying peer PQ sends the query to peer

PS, which is chosen due to its membership within the appropriate communities that are

determined by the meta-information attributes of the query. Section 5.3.4 described how

Bloom filter summaries of claimed attributes were obtained for a particular community.

At this stage, the bloom filters are checked to determine whether a peer claims any

attribute from the meta-information list of the query. False positives can occur thereby

increasing the overhead of locating PS. If PQ matches this description, then it is chosen to

process the query. Else, PQ looks for PS from amongst its immediate neighbors.

After the query is constructed, three approaches are possible for selecting PS

 71

1. PS is the closest seer of a community whose signature S contains at least one

attribute from the meta-information list

2. PS is the seer in the community with S matching the maximum meta-information

attributes

3. PS is the seer of a community whose signature matches the most important

attributes from a weighted meta-information list of attributes.

The requirements of the system will determine which of the approaches will be

implemented. For the purpose of our experiments, we used the first and the second

approach. The first approach has the least communication cost for locating PS and the

second approach has the highest communication cost. Therefore, peers in a system with

more exacting search requirements could use either the second or the third approach.

If PS is not located, PQ asks its neighbors to provide the identity of PS. In the

peer-to-peer networks generated as described in the Section 3.2.2, we found that the

latter case occurs about 26% of the time when 10% of the randomly selected peers

created distinct queries. We also found that PS is almost always located after asking the

neighbor peers. The cost of locating PS is amortized over a number of queries because

peers remember the identities of the closest peers that are seers of a particular

community.

The query is then sent from PQ to PS. Note that this operation is similar to the

push phase of gossiping, except that PQ (or one of its neighbors) selects PS instead of the

initiator of the distributed discovery. PS stores the query on its blackboard. Blackboards

are similar to web pages, and each peer has a blackboard. Like web pages, any peer can

view the content on the blackboard of any other peer, provided that it knows the identity

 72

of that peer so that the blackboard can be reached. To better organize the blackboard

information, a peer can maintain separate blackboards for each community in which it is

a member.

6.5 Checking Blackboards

Periodically and asynchronously, for each community C that it is a member of, a

peer visits the blackboard for C maintained by each of its neighbors who are also

members of C. Again, note the similarity with the gossiping algorithm (pull-phase). If

the visiting peer can solve any of the queries on the blackboard, then a message is

created and sent to the peer that created the query. The message created could be sent via

email to the querying peer.

Regardless of the outcome of the above procedure, the visiting peer copies the

queries and places them onto its own blackboard for community C. Our experiments

showed that even such an asynchronous, background communication amongst peers

provides quick and efficient solutions to queries.

Populated communities of asynchronously operating peers will quickly solve the

queries (includes propagating it forward to peers that can better solve the query via a

push to the appropriate PS) because there will always be a fraction of peer members that

will be involved in pull-operations by checking the seers� blackboards. A time-to-live

value can be added to queries so that stale queries do not use up the resources of the

network.

 73

6.6 Simulation Results

In a digital library, participating peers could create two kinds of queries for

books:

1. Queries containing the title of the book

2. Queries containing partial book contents or genre descriptions (content-based

queries).

Community-Based Search (CBS) can operate using either type of query. Our tests

were performed using queries that were of the second kind. Therefore a solution to a

query contained a list of all the peers that matched as many genre descriptions as

possible, implying that the peers were likely to be members of the communities C={C1,

� , CN} whose member/s owned the requested book.

The performance of CBS was evaluated against the performance of two well-

known search techniques:

1. Gnutella search, a hop-limited breadth-first search of the peer-to-peer network

beginning from the querying peer

2. Hub search, a hop-limited search like Gnutella, except that only one peer,

selected for having the maximum number of neighbors, is forwarded the query

each time.

Gnutella search queries were terminated after 2 hops or after finding a single

matching peer. Hub search queries were terminated after 5 hops or after finding a single

matching peer.

The parameters with which the search techniques were evaluated are:

 74

1. The number of messages required for each search method

2. Quality of the solution, which is a measure of the number of peers found that

were likely to be members of the maximum communities in C, i.e., the peers

found had high link weights for the attributes that matched the genre descriptions

3. Satisfaction of the query, which is the percentage of meta-information attributes

matched

6.6.1 Experiment Setup 1

We simulated the CBS operation over several networks. The first set of

experiments used a 500 node peer-to-peer network created by the rules described in the

section 3.2.2. A set (10% of available peers) of random peers was selected to create

queries. Approximately 20% of the queries were for peers within one of the querying

peer�s community, 10% of the queries attempted to find peers in overlapping

communities, and 70% of the queries were for peers in some random, remote (non-

overlapping) community. The details of the queries were generated from a list of 25

known attributes (|I|=25 and |P|=20). On an average, queries had 2.18 attributes in the

meta-information list. The first approach was used for selecting PS.

Fig. 19 shows that CBS consistently requires fewer messages in order to process

the queries. Furthermore, CBS scales well when the number of queries increases. On the

other hand, the number of messages generated during the Hub search method (Hub)

begins to increase rapidly as more queries are created, because each hub forwards queries

to all its neighbors. Although the Gnutella (Gnu) technique exhibits linear behavior

(since hop-limit was set at 5), it still does not outperform CBS in terms of the number of

 75

messages generated. The average number of messages per query was 1 for CBS (single

push operation); 1.26 for Gnutella; and 2.56 for Hub search.

The graph in Fig.20 displays the link weights of the peers found by the various

search techniques. Higher link weights indicate that the responding peers have higher

0
20
40
60
80

100
120
140

1 5 9 13 17 21 25 29 33 37 41 45 49

Number of Queries

N
um

be
r o

f M
es

sa
ge

s
CBS
Gnu
Hub

Figure 19. Setup #1 - Evaluation of number of messages as the number of querying

peers increases (X-axis)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 20 40 60
Number of Responses

Li
nk

 W
ei

gh
ts

CBS
Hub
Gnu

Figure 20. Quality of the query solution

 76

involvements in the communities whose member/s might own the requested book. The

average link weight of responding peers was 28.67% for CBS; 16.95% for Gnutella; and

16.59% for Hub search.

CBS also outperformed the other search techniques in the satisfaction of the

query. The peers that responded using CBS matched on average 81% of the meta-

information attributes. For Gnutella and Hub search, the responding peers only matched

70% and 67% respectively. Therefore, search queries routed using CBS found more

relevant peers since the responding peers were members of communities that were

related to more meta-information attributes than Gnutella and Hub search with the same

termination conditions as described earlier.

6.6.2 Experiment Setup 2A

The second set of experiments modeled a peer-to-peer network formed by

computer science students from 5 different universities. The purpose of the network was

to communicate and exchange resources, such as help files and sample source code,

about different programming languages. A 5,000 node peer-to-peer network was created

by our rules, as described earlier, to represent approximately 1,000 students per

university. The list of known interest attributes included 96 programming languages that

are currently being used (|I|=96). The list was obtained from Usenet groups (Google

Groups) (See Appendix for the list). The Internet survey (Programmer�s Heaven)

indicates that most engineers know 5 or more programming languages. Therefore in our

model, we assigned an average of 5 programming languages to the set of personal

attributes for each peer. On an average each peer claimed 2.26 attributes in its claimed

 77

attribute set. The claimed attributes in this model represents the programming languages

that the peer uses frequently. The model took into consideration that certain

programming languages were very popular while most others were not so popular. Hence

we assigned the programming languages using a power-law distribution so that 34.36%

of the languages were assigned to about 79.69% of the peers. This resulted in 83

communities being populated with around 0.1% of the peers in the network, and just 2

communities being populated with 10% or more of the peers. Fig. 21 shows the power-

law distribution in the sizes of the communities that were formed. The logarithmic X-

axis plots the frequency and the logarithmic Y-axis plots the community sizes as a

percentage of the number of nodes, i.e. 5,000.

A set (10% of available peers) of random peers was selected to create queries. On

an average, queries had 2.18 attributes in the meta-information list. The creation of

queries also considered the disparity in programming language popularity and followed

the same power-law distribution for attributes in the meta-information lists. The second

0.1%

1.0%

10.0%

100.0%
1 10 100

Frequency

C
om

m
un

ity
 S

iz
e

Figure 21. Power-Law Distribution in sizes of communities formed

 78

approach was used for selecting PS, i.e. PS matches the maximum meta-information

attributes.

Fig. 22 shows that CBS requires many more messages in order to process the

queries. Nevertheless, CBS scales well when the number of queries increases. Although

the Gnutella (Gnu) technique follows the Hub search method (Hub) up to around 120

queries, it soon branches off indicating the use of more messages. The average number

of messages per query was 102.19 for CBS; 77.13 for Gnutella; and 54.94 for Hub

search.

The graph in Fig.23 displays the link weights of the peers found by the various

search techniques. An increasing magnitude of Link Weights forms the logarithmic Y-

axis. The integer value of the meta-information attribute forms the X-axis. Higher link

weights indicate that the responding peers have higher involvements in the communities

whose member/s might own the requested resource. Note that responses are not evenly

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

Number of Queries

N
um

be
r o

f M
es

sa
ge

s CBS
Gnu
Hub

Figure 22. Setup #2A - Evaluation of number of messages as the number of querying

peers increases (X-axis)

 79

distributed. Most of the responses are for lower attribute values (see clustering to the left

of graph). This is because most queries were for popular programming languages and

hence most responses were for those programming languages. However, queries related

to less popular programming languages did not result in high quality responses in

Gnutella or Hub search. CBS, on the other hand, consistently provides high quality

responses even when queries are for less popular items and therefore perhaps further

away from the querying peer. The average link weight of responding peers was 24.30%

for CBS; 23.51% for Gnutella; and 28.76% for Hub search.

CBS also outperformed the other search techniques in the satisfaction of the

query. The peers that responded using CBS matched on average 57% of the meta-

information attributes. For Gnutella and Hub search, the responding peers matched 56%

and 20% respectively. Therefore, again search queries routed using CBS found more

relevant peers for the same reasons described before.

0.001

0.01

0.1

1
0 20 40 60 80

Integer Value of Attributes

Li
nk

 W
ei

gh
ts

CBS Hub Gnu

Figure 23. Setup #2A � Quality of the query solution

 80

6.6.3 Experiment Setup 2B

The third set of experiments used the same model described in section 6.6.2 (i.e.

same network, similar method of creating queries and assigning attributes). The only

difference to the CBS algorithm was that the selection of PS was done using the first

approach, i.e. PS is the closest seer containing at least one attribute from the meta-

information list.

Fig. 24 shows that CBS consistently requires fewer messages in order to process

the queries. Furthermore, CBS scales extremely well when the number of queries

increases. On the other hand, the number of messages generated during the Hub search

method (Hub) and Gnutella search method (Gnu) begins to increase rapidly as more

queries are created. The average number of messages per query was 106.42 for CBS;

927.18 for Gnutella; and 330.58 for Hub search.

0

2000

4000

6000

8000

10000

0 100 200 300 400 500

Number of Queries

N
um

be
r o

f M
es

sa
ge

s

CBS
Gnu
Hub

Figure 24. Setup #2B � Evaluation based on number of messages for search

operation as the number of querying peers increases (X-axis)

 81

The graph in Fig.25 displays the link weights of the peers found by the various

search techniques. An increasing magnitude of Link Weights forms the logarithmic Y-

axis. The integer value of the meta-information attribute forms the X-axis. Again note

that responses are not evenly distributed. The graph shows that queries related to less

popular programming languages did not result in high quality responses in Gnutella or

Hub search. CBS, on the other hand, consistently provides high quality responses even

when queries are for less popular items and therefore perhaps further away from the

querying peer. The average link weight of responding peers was 19.85% for CBS; 6.83%

for Gnutella; and 18.90% for Hub search.

CBS also outperformed the other search techniques in the satisfaction of the

query. The peers that responded using CBS matched on average 56% of the meta-

information attributes. For Gnutella and Hub search, the responding peers matched 55%

and 42% respectively. Therefore, again search queries routed using CBS found more

relevant peers for the same reasons described before.

0.0001

0.001

0.01

0.1

1
0 20 40 60 80 100

Integer Value of Attribute

Li
nk

 W
ei

gh
ts

CBS Hub Gnu

Figure 25. Setup #2B � Quality of the query solution

 82

6.7 Summary

This chapter described the mechanics of our Community-Based Search (CBS)

query propagation technique. Our proposed solution for searching the peer-to-peer

network takes advantage of interest-based communities of peers. This chapter

demonstrated how our community-based search query propagation provides more

efficient searching by targeting one or more communities, irrespective of the current

membership of the searching peer. The community-based search technique consistently

provides high quality responses even when queries are for less popular items and

therefore perhaps further away from the querying peer. CBS also allows search

operations to be based on content rather than just filenames, as in many existing peer-to-

peer search techniques.

CHAPTER 7

TRUST MANAGEMENT USING PEER COMMUNITIES

7.1 Motivation

Current peer-to-peer systems are often targeted for global information sharing,

replicated file storage, and searching by using an end-to-end overlay network. Although

these systems usually involve information exchange between peers, they have either

protected peers� anonymity (Clark et al., 2000; and Dingledine, Freedman and Molnar,

2000), or required transacting peers to trust each other implicitly (Gnutella).

Both these approaches are vulnerable to attacks by malicious peers who could

abuse the peer-to-peer system to spread viruses, incorrect, or damaging information.

Therefore in order to enable practical information sharing in such decentralized and

dynamic systems, a viable trust model needs to be incorporated that will allow peers to

have varying amounts of dynamically changeable trust amongst each other.

Traditionally, trust has been implemented through exhaustive policy lists that

needed to be created at system design time, such as role-based access control (RBAC)

lists (Ferraiolo and Kuhn, 1992). In contrast, our trust management system is dynamic

and requires minimal global knowledge. Further, the decentralized nature of our

algorithms makes it suitable for peer-to-peer systems.

7.2 Challenges for Trust Management

The main challenges that need to be addressed are: how to describe if a peer is

trustworthy, what low-cost verification algorithm can be executed by a peer to determine

 84

the trust value of some other peer, how are trust values about peers exchanged within the

system, how can dishonest peers be punished.

This chapter proposes an approach for trust management in peer-to-peer systems.

It introduces a role-based model for trust amongst peers and shows that it is scalable,

dynamic, revocable, secure and transitive. The trust model assigns role-based trust values

to peers proportional to their status in the system. The status of a peer depends on its

relationships with other peers. Our proposed solution permits asymmetric trust

relationships that can be verified by any peer in the system through a simple, low-cost

algorithm. Since trust values are proportional to the status of a peer, it is essential to

ensure that relationships between any two peers will be legally binding and have non-

repudiation; that is peers cannot falsely deny their relationship with another peer.

However it is equally essential that peers have the ability to revoke their relationships

with malicious peers to punish them for false or damaging information. Finally, this

paper introduces a metric that combines a peer�s trust value for each of its roles. The

combined trust value is a single, relative, probabilistic guarantee that offers peers with a

simple, verifiable trust metric about other peers in the peer-to-peer system.

7.3 Dynamic Coalitions

The research described in this chapter was related to a larger project known as

Dynamic Coalitions (Dasgupta, Karamcheti and Kedem, 2000). Dynamic Coalitions

enables a set of partners to work together while sharing information, resources, and

capabilities in a controlled and accountable fashion. The partners themselves are

 85

organizations composed of people, departments, computational entities, and agents who

perform tasks consistent with the internal rules of their organization.

Coalitions are supported by several innovative techniques such as transitive

delegation, cryptographic file systems, capacity sandboxing, reverse sandboxing, and

fine-grained access control. These techniques facilitate scalable authentication and

revocable authorization of agent computations even when they span resources of

different organizations. In addition, they improve overall efficiency by permitting

migration of computations to, and a caching of services in, partly trusted environments of

another organization.

Let us enforce that every peer belong to at least one pre-determined group

corresponding to the department or organization of its human user. For home users, the

domain name of an Internet connection is used to identify the pre-determined group of

the peer. Thus the basic construct of peer-to-peer systems can be used to implement a

practical Dynamic Coalition environment where coalitions are created between peers in

different groups.

7.4 Peer-to-Peer Trust Model

We propose an optimistic trust model that provides probabilistic guarantees based

on the status / popularity of the peers. Peers have the ability to revoke their relationships

with malicious peers and thus cause the trust values of wrong-doers to be reduced. The

probabilistic guarantee provides a web-of-trust style estimate based on a peer�s past

transactions. The accuracy of the guarantee depends on the thoroughness of the peer in

 86

discovering and validating the trust values of other peers. Therefore, non-critical

transactions need not consume the resources of the peer-to-peer system.

This section describes our model for trust using peer-to-peer communities. It

explains how trust can be assigned and discovered. The following sections discuss how

trust can be revoked, and protected against non-repudiation.

Figure 26. Example of a peer belonging to overlapping communities

7.4.1 Peer Roles and Involvement

Previously it has been pointed out that peer-to-peer communities are implicitly

formed, self-organizing structures that depend on the declared (claimed) interests of

peers. As a result, peers may belong to more than one, possibly overlapping community.

In the case of a constrained application, such as a digital library, community structures

will span across departmental or organizational boundaries. For instance, if the digital

library were implemented by government departments to share documents and resources,

a conceivable community might include peers from both, the Department of Commerce

(Maritime Administration) and the Department of Environmental Resources that are

DDeepptt.. ooff
EEnnvviirroonnmmeennttaall

RReessoouurrcceess

DDeepptt.. ooff CCoommmmeerrccee

Peer belonging to both
communities

 87

concurrently interested in pollution in US ocean water-ways. This is an example of a

cross-departmental community (see Fig.26). Peers might also be part of intra-

departmental communities, such as the community of Maritime Administration, or the

community of Transportation within the Department of Commerce.

The different communities within which a peer can participate due to its claimed

interest attributes constitute the roles of the peer. Every peer will have at least one role

corresponding to its pre-determined group. Link Weights, by definition, indicate the

number of peers known directly (1-hop neighbors), or indirectly (2-hop neighbors) to a

peer within each of its roles (communities). Below a definition for involvement is

provided, which, like Link Weights, is associated with each role Ψ of a peer V and is

proportional to the number of peers within the neighborhood (1-hop and 2-hop

neighbors) of V that are also part of Ψ. We call peers with high values of involvement,

seers (See 5.3.1 for definition).

For the purposes of simplicity, the examples discussed in this chapter consider

peer-to-peer communities each formed due to single shared interest attributes. This

means that the signature S of every community will be a single attribute set. Therefore,

the intersection set Ci ∩ S can only contain one claimed attribute which has an associated

Link Weight that is also the Involvement value of the peer in the community S.

Nevertheless, our definition for Involvement provides a way to extract values in more

complex scenarios where communities of peers share more than just a single interest

attribute in common.

 88

7.4.2 Trust, Links and Link Weights

7.4.2.1 First Attempt: Trust and Links. We initially associated trust values with peer links

due to the following reasons: (1) Peers create and maintain links to other peers whom

they know and therefore trust (optimistically); (2) Since links are bi-directional,

information provided by peers that have more links might be more trustworthy. The

association of trustworthiness of information (authoritativeness) with links is used by

Google in its PageRank metric (Brin and Page, 1998). The PageRank of a web page

measures the authoritativeness of its content; (3) Peer links offer a simple, natural trust

model that can easily be revoked. If after some transaction, a peer loses trust in its

neighbor, it can break (remove) that link, thereby reducing the number of links at its

neighbor.

Examples of analogous systems with a similar association between trust and links

include: citation graphs in scientific publications, where experts who are well-known and

highly regarded by most other authors tend to be highly connected nodes (Kleinberg,

1998; Adamic and Adar, 2000; and Page et al. 1998); and eBay points, where the rank of

users is proportional to the number of transactions (purchase / sale) that they have

completed with other eBay users.

Despite its wide-spread use, the association of trust with peer links does not

provide an elegant solution to trust management. Often, peers that are highly linked-to

(hubs) make mistakes, provide incorrect information, or assist in spreading damaging

information unintentionally. Pastor-Satorras and Vespignani (2001) argues that viruses

 89

or damaging information from hubs can epidemically spread and persist within a scale-

free network, such as peer-to-peer network.

We believe that by making a slight modification, links can provide practical and

accurate trust guarantees in decentralized systems. The most important detail that has

been lacking in previous trust models is the consideration that peers participate in many

different communities (roles). Therefore, in the citation graph, although an author of

papers in Biology is highly cited, it is conceivable that the author�s explanations of

Electrical Engineering concepts are incorrect. Likewise, on eBay, a popular antique seller

is not necessarily a trusted expert on electronic equipment.

7.4.2.2 Second Attempt: Trust and Links Weights. It is necessary to consider the roles of

a peer when deriving its trust value. We thus propose the use of Link Weights as an

indication of role-based trust. With reference to Fig. 2, peer V knows more peers within

the community of peers interested in �Biography�, than it knows within its other

communities. As a result, information provided by V and classified as �Biography� is

more likely to be accurate than information provided by V and classified as �Magazine�.

Let us imagine another peer named W that has a Link Weight of 10 associated

with the interest �Biography.� Using our model, V would have a trust value of 10 for W,

but W would have a higher trust value of 23 for V. The association of Link Weights with

trust values allows for asymmetric trust relationships that imitates trust relationships

amongst humans in a social network.

 90

7.4.3 Trust Value Distribution

We plot the trust value distribution in a large-scale peer-to-peer network

containing 1000 nodes. The graphs in Fig. 27 show a non-scale-free distribution of trust

values. This is important because it highlights the dissimilarity in the distribution of trust

values when it is obtained from links and our model, where trust values are obtained

from Link Weights.

In order to correctly model the peer-to-peer network, we incorporate the scale-

free property into the network topology (See 3.2.2 for technique used to form peer-to-

peer networks). Therefore, when associated with peer links, trust value distribution

decays as a power-law (see Fig. 28), like the degree distribution of peers. This results in

almost all peers having low trust values except for a small group of peers that have

exceptionally high trust values.

In contrast, Fig. 27 illustrates that the majority of peers start out with a median

trust value (around the center of a range of values), while a small group of peers have

either higher or lower trust values. In the network considered, the average trust value was

100, maximum was 628, minimum was 7, and mode and median were 93. This

distribution is most suitable for an optimistic trust model such as ours because a peer can

enter into transactions with other peers whose trust values are median and most likely

comparable to its own. Malicious peers will find their trust values dropping unlike in a

scale-free distribution where trust values usually cannot be lowered because most peers

start out with low trust values. For critical transactions, information can be sought from

peers with higher trust values.

 91

1

10

100

1000

0 200 400 600 800 1000

Peer ID

Tr
us

t V
al

ue

a. Trust Values of all peers (see median band)

1

10

100

1000

1 10 100 1000

Number of Peers

Tr
us

t V
al

ue

b. Frequency of peers with different trust values

Figure 27. Trust Value Distribution when trust is associated with Link Weights

(1000 peers)

 92

7.4.4 Verification and Validation

In section 4.3.1 we proposed an Attribute Escalation algorithm that uncovered

implicit communities and enabled the formation of new communities. We propose a

simple modification to the Attribute Escalation algorithm that will allow trust values of a

peer to be guaranteed. Instead of simply sending out the list of claimed attributes, each

peer V will construct the following message M and send it individually to each of its

neighborhood peers {V1, V2, � , Vn}.

{ } ()MsourceEsourceCAsourceIPdestIPM ,,,=

where,

M is the constructed message,

destIP is the destination identity (a neighborhood peer),

sourceIP is the sender identity (i.e. V),

sourceCA is the claimed attributes list of the sender,

()MEsource is the M�s signature by the sender�s private key.

1

10

100

1000

1 10 100 1000

Number of Peers

Tr
us

t V
al

ue

Figure 28. Trust Value Distribution when trust is associated with links (1000 peers)

 93

Every peer is responsible for storing messages received from its neighborhood

peers in a publicly accessible blackboard (see section 6.4). Blackboards are like websites

and the content on a peer�s blackboard can be viewed by any peer within the system.

Let us return to the example in Fig. 2. When V claims a Link Weight (and

therefore trust value) of 23 for �Biography,� any peer W in the peer-to-peer system will

be able to verify this value by visiting V�s blackboard and re-calculating the Link Weight

from the posted messages. This calculation is a simple counting operation with a

complexity of O(n) (See section 4.3.1 for detailed algorithm). Prior to verifying the Link

Weight however, W might chose to validate the signatures of the messages posted on V�s

blackboard in an attempt to uncover fabricated messages that were used to artificially

increase V�s Link Weight value. We call these fabricated messages false messages.

It might seem intuitive that before entering into a critical transaction with peer V,

an exhaustive process needs to be employed where every one of V�s messages has its

signature validated. However, we show that contrary to intuition, peers need only

validate a small percentage of messages to uncover one or more false messages (if they

exist) with a high degree of probability.

To begin a brief theoretical analysis is provided and then it is backed with results

obtained from experiments.

Let N be the number of messages on peer V�s blackboard. Assume k messages are

false. Therefore, N-k messages are not false. Also assume that peer W randomly selects

m messages to validate. Now the probability that W will not discover any false messages

is given by:

 94

mN
mkN

N
kN

N
kN

N
kN

−
−−

××
−

−−
×

−
−−

×
−

= L
2

2
1

1ρ (4)

So the probability that W will discover a false message is:

ρρ −=′ 1 (4.1)

Fig. 29 plots the relation between percentage messages verified and ρ'. The

curves vary for k = 10% of N, k = 20% of N, and k = 30% of N. N was chosen to be 100.

An increasing percentage of m/N forms the X-axis, while ρ' forms the Y-axis. The graph

shows that selecting just 10-20% of the messages to validate will uncover false messages

with probability of 70-95%. If a peer fabricates more messages, then the validation of

messages will quickly uncover false messages.

60%
65%
70%
75%
80%
85%
90%
95%

100%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

%(m /N)

ρ'

10% false
20% false
30% false

Figure 29. The relationship between percentage of messages chosen to validate

(%m/N) and probability of uncovering false messages (ρ')

 95

The theoretical analysis indicates that peers will uncover false messages even

when a small, randomly selected set of messages is validated. We also observed this

behavior in our experiments. Fig. 30 presents two cases: N = 100 messages and N = 700

messages, when the percentage of messages randomly selected for validation (%m/N)

was set at only 10%. The graph shows that even when only 10% of the messages are

false, 10% of those false messages were uncovered by a peer that randomly selected 10%

of the original number of messages to validate.

7.5 Using the Trust Model in Dynamic Coalitions

Dynamic Coalitions are temporarily formed between peers belonging to different

communities that each represents a separate organization / department. The trust model

we proposed can be used to provide probabilistic trust guarantees to each peer in the

coalition. Table 7 lists the algorithm that we use to obtain trust values of a peer in a

Dynamic Coalition. Since peers can belong to more than one community, the FindTrust

0%
20%
40%
60%
80%

100%

0% 20% 40% 60% 80% 100%

%False Messages

%
Fa

ls
e

M
es

sa
ge

s
U

nc
ov

er
ed

N=100
N=700

Figure 30. Plot of the percentage of false messages uncovered (Y-axis) as the

percentage of false messages is increased (X-axis). %(m/N) = 10%

 96

method finds all the trust values (Link Weights) of a peer V. The method can be invoked

by any peer W (not necessarily part of the Coalition). Initially, the CommonCommunities

method checks V�s claimed attributes (posted as messages on its blackboard) for any

common attributes between W and V, indicating possibly shared communities. This is a

linear search operation with complexity of O(n). If there are no common attributes, W

asks all its immediate neighbors if any of them share communities with V. In the worst

case scenario (neighbors need to execute CommonCommunities), the operation has O(n2)

complexity. The best case scenario (neighbors already know common communities from

past transactions) is an O(n) operation. As a final attempt, if still no common attributes

exist, W asks its 2-hop neighbors the same question (worst case: O(n2), best case: O(n))

before giving up trying to find trust values for V. Remember that after the attribute

escalation algorithm, a peer knows the identities of all its 2-hop neighbors and therefore

does not have to find their identities at this stage. In order to reduce bandwidth utilization

and processing time, a peer might decide to forego finding trust values from its 2-hop

neighbors. Our experiments revealed that 2-hop neighbors need to be consulted 32% of

the time when 10% of randomly selected peers invoked FindTrust.

Table 7

Algorithm to Find Trust Values of a Peer in a Coalition

Line Pseudo-Code

1.

2.

3.

/* function prototype declaration */

bool CommonCommunities(int); /* peers share communities? */

int[] ListTrusts(int); /* list all known trust values */

 97

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

bool AskNeighbors(int); /* 1-hop neigh share communities? */

int[] Lower(int[]); /* multiply trust values by 0.5 */

bool Ask2HopNeighbors(int); /* 2-hop neigh share? */

bool VerifiedTrusts(int[]); /* verify and validate values */

/* FIND-TRUST (peer) */

int[] FindTrust(int PeerID)
 int[] list_Trusts; /* trust values */

 if (call CommonCommunities(PeerID))

 list_Trusts = call ListTrusts(PeerID);

 else-if (call AskNeighbors(PeerID))

 list_Trusts = call ListTrusts(PeerID);

 list_Trusts = call Lower(list_Trusts);

 else-if (call Ask2HopNeighbors(PeerID))

 list_Trusts = call listTrusts(PeerID);

 list_Trusts = call Lower(list_Trusts);

 list_Trusts = call Lower(list_Trusts);

 else-if
 WARNING “No trust values!”;
 return NULL;
 end-if

 if (call VerifiedTrusts(list_Trusts))

 return list_Trusts;
 else
 WARNING “Found False Messages”;

 98

31. return list_Trusts;
 end-if

For each attribute found in common with V, the corresponding Link Weight is

stored in list_Trusts. Link Weights provided by 1-hop neighbors will be multiplied by

0.5 and values provided by 2-hop neighbors get multiplied by 0.25. All trust values are

validated using the process described in the earlier section.

The list of trust values provides a peer in a coalition with a probabilistic trust

guarantee about another peer. Tampered values do not go undetected (due to verification

and validation), making these values secure. Additionally, trust values can be transitively

obtained from other peers and scaled down depending on the peer providing the values.

As an alternative to our current scaling down process, trust values transitively

obtained from another peer could be multiplied by the trust value of that peer. However,

it has not yet been explained how a peer can have a single trust value. The next section

will present our idea for a collective trust value of a peer that can be used for a more

realistic scaling process amongst other benefits.

7.5.1 Aggregating Trust Values into an iComplex

The list of trust values associated with each peer can be used to provide

probabilistic guarantees to other peers. However in a practical implementation of peer-to-

peer communities, a single shared interest attribute will not always be the signature of a

community. At the end of section 3.1 it was assumed that every community signature

 99

contained only a single attribute. Let us see what happens when this simplification

assumption were temporarily removed.

Firstly this means that |S| could be greater than one. Imagine a digital library with

several communities of peers. Suppose there exists a community (of science-fiction

enthusiasts) with signature S1 = {�Fiction�, �Technical�}, and another community (of

fiction enthusiasts) with signature S2 = {�Fiction�}. Finally assume that Peer V (from

Fig. 2) is a member of both these overlapping communities. Based on the Link Weight

values from Fig. 2 and the definition of Involvement (Section 5.3.1), V is more involved

in the community of fiction enthusiasts than in the former community. If there exists

another peer W with Link Weight values, �Fiction�=18 and �Technical�=18 (therefore

W�s Involvement in community S1 is 18), then information provided by W and classified

as �science-fiction� is more likely to be accurate than information provided by V having

the same classification.

 100

0

5

10

15

20

0 2000 4000 6000 8000 10000

iComplex

Se
er

 R
ol

es

a. iComplex Vs Number of communities in which peer is a seer

0

5

10

15

20

0 2000 4000 6000 8000 10000

iComplex

C
om

m
un

ity
 M

em
be

rs
hi

ps

H
el

d

b. iComplex Vs Community memberships held

580

600

620

640

660

0 2000 4000 6000 8000 10000

iComplex

A
vg

. C
om

m
un

ity
 S

iz
e

c. iComplex Vs Average Community Size

Figure 31. Behavior of iComplex when calculated as a sum of all trust values

 101

Involvement values, which are associated with each community within which a

peer is a member, play an important role in determining accurate role-based trust values

of a peer. Now a proposal is made for aggregating all involvement values corresponding

to a peer into an iComplex. An iComplex value is calculated by each peer individually

and stored on their own blackboards. Since iComplex values are, in essence,

aggregations of trust values, the verification and validation process described earlier will

still apply. As a system design, all peers need to agree upon the aggregation function to

calculate their iComplex values. Examples include but are not restricted to: sum of all

trust values, or average of all relative trust values. A relative trust value rt1 = t1 divided

by the approximate size of community S1={C1}, where t1 is a trust value for attribute C1,

and the approximate size of the community is obtained through Distributed Discovery

(see chapter 5).

Fig. 31 shows the behavior when sum is the aggregate function used to compute

iComplex values. The first graph illustrates that higher iComplex values implies that the

peers are seers (highly-involved) in more communities and therefore these seers have

higher trust values than other peers in each of their roles. The next graph shows the

relationship between iComplex and number of memberships held by a peer. This graph is

significant because it demonstrates the effectiveness of an iComplex value aggregated

using a simple sum function. The graph shows that peers cannot increase their iComplex

values by simply joining many communities. In fact peers that are members of many

communities are most likely to have low iComplex values (notice the clustering of points

close to the Y-axis). The final graph shows that peers cannot obtain high iComplex

 102

values by joining very large communities. The peers with the highest iComplex values

were members of average sized communities.

Therefore, iComplex values calculated by adding all trust values of a peer can

provide a reliable, collective trust value. Moreover, peers will not be able to synthetically

increase their iComplex value by simply joining more communities or joining larger

communities. A higher iComplex usually indicates that the peer is a seer of many

communities and therefore trusted by the peers of those communities.

7.5.2 Using iComplex for Information Assurance

An incremental change to the format of the responses can be made by requiring

the responding peer to send its iComplex value as well. This provides the querying peer

with information on the probabilistic trust values of the responding peers. The iComplex

values received will allow a querying peer to rank responses based on the probabilistic

trust values of the responding peers.

7.5.3 Attacks and Threat Assessment

Without the iComplex value, malicious peers could misinform a querying peer

about the peer that owns a particular book / resource. A misinformed querying peer will

then obtain incorrect / damaging data from the peer identified by malicious peers. In a

business-world implementation of digital libraries, malicious peers might dishonestly

divert traffic away from certain other peers.

Since iComplex values are ultimately calculated from Link Weights which are

dependent on the number of peers in one�s neighborhood that share a certain attribute,

one way of fraudulently increasing the iComplex value would be to create dummy

 103

neighbors with real peer identities and interests. This is a difficult problem to solve.

There have been a few attempts to solve this by: using reputation-based systems or

making it difficult to create a new peer identity (Murphy VII and Manjhi, 2002) (by

computationally expensive key generation, or associating it with a government issued

identity number, such as social security number, voter identification number, and so on).

Finally, because our trust model provides probabilistic guarantees, a peer with a

high iComplex value can still provide (with low probability of doing so) incorrect /

damaging information as a result of a query. We therefore propose a revocation

mechanism (described in the next section) as a means to punish wrong-doers.

7.6 Revocation and Non-Repudiation of Trust

This section discusses how our trust model allows peers to revoke relationships

with malicious peers, and the non-repudiation of peer relations. Malicious peers are not

only peers that provide incorrect/damaging information, but also are peers that use unfair

methods to lower the trust values of their neighbors.

7.6.1 Revocation

We propose a distributed revocation mechanism, where each peer maintains its

own revocation list. Therefore a disgruntled peer W that has been affected by previous

transactions with a malicious peer V can simply maintain this information in a revocation

list posted on its blackboard.

The validation procedure described earlier involves validating the signatures of

the messages posted on a peer V�s blackboard in an attempt to uncover false messages. In

order to allow for revocation of these messages, we propose an additional action that

 104

peers entering into a transaction with V can execute after the validation procedure. We

call this action Revocation Check. The action entails: (1) randomly selecting a few

validated messages from V�s blackboard; (2) determining the peers that authored those

messages; and (3) visiting the blackboards of the message authors to check for possible

revocations. If the Revocation Check finds that the message authors have placed V in

their revocation lists, then those messages are called revoked messages.

Section 7.4.4 explains the relationship between the number of messages validated

and the number of false messages uncovered. We therefore know that if 10% of the

messages of a peer V were selected for Revocation Check and 10% of V�s neighbors had

placed V in their revocation lists, then the Revocation Check will find that 10% of the

selected messages are revoked messages.

As a result, if V has maintained a good record over a large number of

transactions, except for a few incorrect/damaging transactions, then its trust value will

remain high. Also, a malicious neighbor of V would not be able to independently bring

down the V�s trust value.

Finally, the Revocation Check procedure can ascertain if a malicious neighbor W

of V has unfairly revoked its relationship with V. This means that W continues to account

V�s signed messages to calculate its trust values and iComplex value even after placing V

in its revocation list.

7.6.2 Non-Repudiation

It has been shown how peers can revoke their relationships with malicious peers

to punish them for false or damaging information. However, since trust values are

 105

derived from peer links, it is essential to ensure that peers cannot falsely deny their

relationship with another peer.

A malicious neighbor W of V cannot lie about the fact that it is a neighbor of V.

This is because the signed message (section 3.3) addressed to V and created by W will be

publicly accessible from V�s blackboard. Therefore trust values calculated as a result of

peer links have non-repudiation.

7.7 Summary

This chapter presented an approach for trust management in peer-to-peer systems.

Our optimistic role-based model for trust amongst peers was introduced and it was

shown to be scalable, dynamic, revocable, and secure. Our proposed solution permits

asymmetric trust relationships that can be verified by any peer in the system through a

simple, low-cost algorithm. This chapter introduced a metric known as iComplex that

combines a peer�s trust value for each of its roles into a single, relative, probabilistic

guarantee of trust. Finally, it discussed how our trust model allows peers to revoke

relationships with malicious peers, and the non-repudiation of peer relations.

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Future Work

The current crop of peer-to-peer systems focuses on sharing of resources

(primarily files) amongst peers. Since for most purposes a client-server configuration

provides a simple architecture and guaranteed performance, there has been very little

interest within industry circles for adopting the peer-to-peer paradigm. Additionally, a

completely decentralized system makes revenue generation and accounting non-trivial.

This has further hindered industry participation and early-adoption.

Some interesting challenges that can be solved within the peer-to-peer paradigm

are: revenue generation and accounting, so that companies or individuals can make

money; alternative trust models and reputation systems, to allow for secure and

trustworthy collaboration amongst peers; and investigations into the feasibility of

integrating the peer-to-peer paradigm with mobile ad hoc networks, multimedia

streaming, or grid computing, in order to uncover new and valuable applications.

Within the context of this work, additional work can attempt to further bring

down the number of messages during community-based search. This would involve the

deployment of a non-trivial caching algorithm amongst peers within a community so that

the communication overhead of locating the appropriate seer by asking one�s neighbors

is reduced.

 107

8.2 Conclusions

Peer-to-peer communities provide a method for arranging large numbers of peers

in a self configuring peer relationship based on declared attributes (or interests) of the

participating peers. This method is expected to have an impact on sharing of resources,

pruning of search spaces, and trust relationships amongst peers in the network.

This dissertation shows that the attribute based clustering of peers can be made to

work, by defining an overlay network, consisting of links. Links are user-directed

connections based on experience and can be fine tuned for search and sharing

performance. The peer formation algorithm is shown to stabilize in two rounds using the

escalation technique. Additionally, an efficient community discovery procedure is

introduced that uses weights and a threshold. Our simulations of the discovery procedure

have confirmed that peers can quickly discover numerous memberships in different peer-

to-peer communities using very little computation and communication messages.

Next, a push-pull communication technique was presented that helps disseminate

information and propagate search queries within a peer-to-peer network. An initial set of

algorithms provided a method for peers to discover their community memberships and

certain properties of their communities. These properties include the approximate

number of members and the information about the member peers. A repeatable push-pull

gossiping protocol is then used to disseminate information only within the community of

interested peers. We used simulations to provide evidence of the protocol�s efficiency,

robustness, and scalability.

 108

Our solution for searching the peer-to-peer space also takes advantage of interest-

based communities of peers. Several experiments demonstrated how our community-

based search query propagation provides more efficient searching by targeting one or

more communities, irrespective of the current membership of the searching peer. The

community-based search technique also allows search operations to be based on content

rather than just filenames, as in many existing peer-to-peer search techniques.

This dissertation also presented an approach for trust management in peer-to-peer

systems. It introduced an optimistic role-based model for trust amongst peers and

showed that it is scalable, dynamic, revocable, and secure. Our solution permits

asymmetric trust relationships that can be verified by any peer in the system through a

simple, low-cost algorithm. A metric known as iComplex was established to combine a

peer�s trust value for each of its roles into a single, relative, probabilistic guarantee of

trust. Finally, the dissertation discussed how our trust model allows peers to revoke

relationships with malicious peers, and the non-repudiation of peer relations.

REFERENCES

Abdul-Rahman, A. and Hailes, S.: �Supporting trust in virtual communities,� Proceedings of
the 33rd Hawaii International Conference on System Sciences, 2000.

Aberer, K. and Despotovic, Z.: �Managing trust in a peer-2-peer information system,�
Proceedings of the 10th International Conference on Information and Knowledge
Management, Paques, H., Liu, L. and Grossman, D. (Eds.), ACM Press, 2001, pp.
310-317.

Aberer, K.: �P-Grid: A self-organizing access structure for P2P information systems,� 6th
International Conference on Cooperative Information Systems, Trento, Italy, Lecture
Notes in Computer Science 2172, Springer Veralg, Heidelberg, 2001.

Adamic, L. and Adar, E.: �Friends and neighbors on the web,� (unpublished), 2000.

Adamic, L.A., Lukose, R.M., Puniyani, A.R., and Huberman, B.A.: �Search in power-law
networks,� Physical Review E, vol. 64, no. 4, 046135, 2001.

Agrawal, D., Abbadi, A.E., and Steinke, R.: �Epidemic algorithms in replicated databases,�
Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Tucson, AZ, 1997, pp. 161-172.

Akamai Technologies. http://www.akamai.com/

Albert, R., Jeong, H., and Barabási, A.-L.: �Diameter of world-wide web,� Nature, vol. 410,
Sept. 1999, pp. 130-131.

Amaral, L.A.N., Scala, A., Barthélémy, M., and Stanley, H.E.: �Classes of small-world
networks,� Proceedings of the National Academy of Sciences, vol. 97, no.21, 2000,
pp. 11149-11152.

Axelrod, A. and Cohen, M.D.: Harnessing complexity: Organizational implications of a
scientific frontier, Basic Books, New York, NY, 2000.

Babaoglu, O., Meling, H., and Montresor, A.: �Anthill: A framework for the development of
agent-based peer-to-peer systems,� Proceedings of the 22th International Conference
on Distributed Computing Systems, Vienna, Austria, 2002.

Barabási, A.-L and Albert, R.: �Emergence of scaling in random networks,� Science, vol.
286, 1999, pp. 509-512.

Bloom, B.: �Space/time trade-offs in hash coding with allowable errors,� Communications of
the ACM, vol. 13, no. 7, 1970, 422-426.

110

Bolosky, W., Douceur, J., Ely, D., and Theimer, M.: �Feasibility of a serverless distributed
file system deployed on an existing set of desktop PCs,� Proceedings of
SIGMETRICS, Santa Clara, CA, 2000.

Brin, S. and Page, L.: �The anatomy of a large-scale hypertextual Web search engine,�
Computer Networks and ISDN Systems, 30(1-7), 1998, pp. 107-117.

Bu, T. and Towsley, D.: �On distinguishing between internet power law topology
generators,� Proceedings of INFOCOM, 2002.

Caronni, G., Waldvogel, M., Sun, D., and Plattner, B.: �Efficient security for large and
dynamic multicast groups,� IEEE 7th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, June 1998, pp. 376-383.

Clark, I., Sandberg, O., Wiley, B., and Hong, T.: �Freenet: A distributed anonymous
information storage and retrieval system,� Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, Berkeley, CA, 2000.

Clarke, I., Hong, T.W., Miller, S.G., Sandberg, O., and Wiley, B.: �Protecting free
expression online with freenet,� IEEE Internet Computing, IEEE Press, vol. 6, no. 1,
2002, pp.40�49.

Cuenca-Acuna, F.M., Peery, C., Martin, R.P., and Nguyen, T.D.: �PlanetP: Using gossiping
to build content addressable peer-to-peer information sharing communities,�
Proceedings of the 12th International Symposium on High Performance Distributed
Computing, June 2003.

Dasgupta, P., Karamcheti, V., and Kedem, Z.: �Efficient and secure information sharing in
distributed, collaborative environments,� Proceedings of 3rd International Workshop
on Communication-based Systems, April 2000.

Demers, A.J., Greene, D.H., Hauser, C., Irish, W., and Larson, J.: �Epidemic algorithms for
replicated database maintenance,� Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, B.C., Canada, 1987, pp. 1-12.

Dingledine, R., Freedman, M., and Molnar, D.: �The freehaven project: Distributed
anonymous storage service,� Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, 2000.

Druschel, P. and Rowstron, A.: �Past: Persistent and anonymous storage in a peer-to-peer
networking environment,� Proceedings of the 8th IEEE Workshop on Hot Topics in
Operating Systems, Elmau/Oberbayern, Germany, May 2001, pp. 65�70.

Ellis, C.A., Gibbs, S.J., and Rein, G.L.: �Groupware: some issues and experiences,�
Communications of ACM, vol. 34, no.1, 1991, pp. 39-58.

111

Erdös, P. and Rényi, A.: �On the strength of connectedness of a random graph,� Acta
Mathematica Acad. Sci., Hungary, 12, 1961, pp. 261-267.

Fan, L., Cao, P., Almeida, J., and Broder, A.: �Summary Cache: A scalable wide-area web
cache sharing protocol,� Proceedings of ACM SIGCOMM, Vancouver, Canada, 1998.

Ferraiolo, D.F. and Kuhn, D.R.: �Role based access control,� 15th National Computer
Security Conference, 1992.

Festinger, L.: �Laboratory experiments: The role of group belongingness,� in Miller, J.G.,
ed., Experiments in Social Process, McGraw-Hill, New York, 1950.

Flake, G.W.: The computational beauty of nature: Computer explorations of fractals, chaos,
complex systems, and adaptation, MIT Press, January 2000.

Flake, G.W., Lawrence, S., and Giles, C.L.: �Efficient identification of web communities,�
Proceedings of the 6th International Conference Knowledge Discovery and Data
Mining, ACM Press, New York, 2000, pp. 150-160.

Flake, G.W., Lawrence, S., Giles, C.L., and Coetzee, F.M.: �Self-organization and
identification of web communities,� IEEE Computer, vol. 35, no.3, March 2002, pp.
66-71.

Gajewska, H., Kistler, J., Manasse, M.S., and Redell, D.D.: �Argo: A system for distributed
collaboration,� Proceedings of the Second ACM International Conference on
Multimedia, 1994.

Garey, M.R. and Johnson, D.S.: Computers and in-tractability: A guide to the theory of NP-
completeness, W.H. Freeman, New York, 1990.

Garfield, E.: Citation indexing: Its theory and application in science, Wiley, New York,
1979.

Gibson, D., Kleinberg, J., and Raghavan, P.: �Inferring web communities from link
topology,� Proceedings of the 9th ACM Conference on Hypertext and Hypermedia,
1998.

Gil, Y. and Ratnakar, V.: �Trusting information sources one citizen at a time,� Proceedings
of the 1st International Semantic Web Conference, Sardinia, Italy, 2002.

Gnutella. http://www.gnutelliums.com/

Golbeck, J., Parsia, B., and Hendler, J.: �Trust networks on the semantic web,� Proceedings
of Cooperative Intelligent Agents 2003, Helsinki, Finland, 2003.

Google Groups. http://groups.google.com/

112

Google. http://www.google.com/

Granovetter, M.: �Strength of weak ties,� American Journal of Sociology, vol. 78, 1973, pp.
1360-1380.

Gribble, S.D., Brewer, E.A., Hellerstein, J.M., and Culler, D.: �Scalable, distributed data
structures for Internet service construction,� Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, San Diego, CA, 2000

Gribble, S.D., Welsh, M., Behren, R.v., Brewer, E.A., Culler, D., Borisov, N., Czerwinski,
S., Gummadi, R., Hill, J., Joseph, A.D., Katz, R.H., Mao, Z., Ross, S., and Zhao, B.:
�The Ninja architecture for robust internet-scale systems and services,� Special Issue
of Computer Networks on Pervasive Computing, vol. 35, no.4, 2001, pp. 473-497

Gummadi, R. and Hohlt, B.: �Efficient implementation of a publish-subscribe-notify model
using highly-concurrent B-Trees� (unpublished), 2000.

Harchol-Balter, M., Leighton, T., and Lewin, D.: �Resource discovery in distributed
networks,� 18th Annual ACMSIGACT/SIGOPS Symposium on Principles of
Distributed Computing, 1999.

Hayden, M. and Birman, K.: �Probabilistic broadcast,� Cornell CS Technical Report TR96-
1606, 1998.

Hayes, P., Hauptman, A., Carbonnell, J., and Tomita, M.: �Parsing spoken language, a
semantic caseframe approach,� Proceedings of the 11th International Conference on
Computational Linguistics, Bonn, Germany, 1986, pp. 587-592.

Hodes, T.D., Czerwinski, S.E., Zhao, B.Y., Joseph, A.D., and Katz, R.H.: �An architecture
for secure wide-area service discovery,� ACM Baltzer Wireless Networks: Selected
papers from MobiCom 1999, 1999.

Hong, X. and Gerla, M.: �Dynamic Group Discovery and Routing in Ad Hoc Networks,�
Proceedings of the 1st Annual Mediterranean Ad Hoc Networking Workshop,
Sardegna, Italy, September 2002.

ICQ. http://www.icq.com/

Jeong, H., Néda, Z., and Barabási, A.-L.: �Measuring preferential attachment for evolving
networks,� European Physics Letters 61, 567, 2003.

Jive Software, http://www.jivesoftware.com/

Karp, R., Shenker, S., Schindelhauer, C., and Vocking, B.: �Randomized rumor spreading,�
41st Symposium on Foundation on Computer Science, Redondo Beach, CA,
November 2000.

113

KaZaA. http://www.kazaa.com/

Keoh, S.L. and Lupu, E.: �Trust and the establishment of ad-hoc communities,� 2nd Internal
iTrust Workshop on Trust Management in Dynamic Open Systems, London, UK,
September 2003.

Kleinberg, J.M.: �Authoritative sources in a hyper-linked environment,� Proceedings of the
9th Annual AVM-SIAM Symposium on Discrete Algorithms, 1998, pp. 668-677.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S.,Weatherspoon, H.,Weimer, W., Wells, C., and Zhao, B.: �OceanStore: An
architecture for global-scale persistent storage,� Proceedings of the 9th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Cambridge, MA, 2000.

Lamport, L. and Chandy, M.: �Distributed snapshots: determining global states of a
distributed system,� ACM Transactions on Computer Systems. vol. 3, no. 1, February
1985, pp. 63-75.

Marsh, S.: �Formalising trust as a computational concept,� Ph.D. Thesis, University of
Stirling, 1994.

Matrouf, A., Gauvain, J.L, Ne´el, F., and Mariani, J.: �An oral task-oriented dialog for air-
traffic controller training,� SPIE 1293, Applications of Artificial Intelligence,VIII,
April 1990.

Maymounkov, P. and Mazi`eres, D.: �Kademlia: A peer-to-peer information system based on
the XOR metric,� Proceedings of the 1st International Workshop on Peer-to-Peer
Systems, Boston, MA, 2002.

Meissner, A. and Musunoori, S.B.: �Group Integrity Management Support for Mobile Ad-
Hoc Communities,� Workshop proceedings Middleware for Pervasive and Ad-Hoc
Computing, Rio de Janeiro, Brazil, June, 2003, pp. 53-59.

Moy, J.: Ospf version 2, RFC 2328. Available from http://rfc.sunsite.dk/rfc/rfc2328.html,
1998. (Visited: November 25, 2003)

MSN Chat. http://chat.msn.com/

Murphy VII, T. and Manjhi, A.K.: �Anonymous identity and trust for peer-to-peer
networks,� (unpublished), 2002.

Murray, H.A.: Explorations in personality, Oxford University Press, New York, 1938.

Napster. http://www.napster.com/

114

Newman, M. E. J.: �Clustering and preferential attachment in growing networks,� Physical
Review E 64, 025102, 2001.

Oppen, D.C. and Dalal, Y.K.: �The clearinghouse: A decentralized agent for locating named
objects in a distributed environment,� ACM Transactions on Office Information
Systems, vol. 1, no. 3, July 1983, pp. 230-253.

Page, L.: �PageRank: bringing order to the web,� Stanford Digital Libraries working paper
1997-0072, 1997.

Page, L., Brin, S., Motwani, R., and Winograd, T.: �The PageRank citation ranking:
Bringing order to the Web,� Stanford Digital Libraries Working Paper, 1998.

Pastor-Satorras, R. and Vespignani, A.: �Epidemic spreading in scale-free networks,�
Physical Review Letters, vol. 86, no. 14, April 2001, pp. 3200-3203.

Pelc, A.: �Fault-tolerant broadcasting and gossiping in communication,� Networks, vol. 28,
no. 3, October 1996, pp. 143-156.

Programmer�s Heaven.
http://www.programmersheaven.com/c/userpoll/Poll_archive.htm?PollID=24 (Visited
on: November 25, 2003)

Pujol, J.M., Sangüesa, R., and Delgado, J.: �Extracting reputation in multi agent systems by
means of social network topology,� Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 467�474, ACM
Press, July 2002.

Renesse, R.V, Minsky, Y., and Hayden, M.: �A gossip-style failure detection service,�
Proceedings of Middleware, 1998.

Ripeanu, M. and Iamnitchi, A.: Bloom filters short tutorial (unpublished), 2001.

Rowstron, A. and Druschel, P.: �Pastry: Scalable, distributed object location and routing for
largescale peer-to-peer systems,� Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms, 2001, pp. 329-350.

Scott, J.: Social network analysis: a handbook, SAGE Publications, 1991.

Steyvers, M. and Tenenbaum, J.B.: �The large-scale structure of semantic networks:
statistical analyses and a model of semantic growth� (submitted to 25th Annual
Meeting of the Cognitive Science Society).

Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H.: �Chord: A scalable
peer-to-peer lookup service for internet applications,� Proceedings of the ACM
SIGCOMM, 2001, pp.149-160.

115

Strogatz, S.H.: �Exploring complex networks,� Nature, vol. 410, London, 2001, pp. 268-276.

Waldman, M., Rubin, A.D., and Cranor, L. F. Publius: �A robust, tamper-evident,
censorship-resistant, web publishing system,� Proceedings of the 9th USENIX
Security Symposium, 2000, pp. 59�72.

Watts, D. and Strogatz, S.: �Collective dynamics of �small-world� networks,� Canadian
Journal of Mathematics, vol. 8, no. 3, 1956, pp. 399-404.

White, H.D. and McCain, K.W.: �Bibliometrics,� Annual Review Information Science and
Technology, Elsevier, 1989, pp. 119-186.

Yahoo Chat. http://chat.yahoo.com/

Yahoo Groups. http://groups.yahoo.com/

Yang, B. and Garcia-Molina, H.: �Efficient search in peer-to-peer networks,� International
Conference on Distributed Computing Systems, Vienna, Austria, 2002.

Yolum, P. and Singh, M.P.: �Emergent properties of referral systems,� Proceedings of the
2nd International Joint Conference on Autonomous Agents and MultiAgent Systems,
ACM Press, July 2003.

Yu, B. and Singh, M.P.: �A social mechanism of reputation management in electronic
communities,� Proceedings of the 4th International Workshop on Cooperative
Information Agents, Klusch, M., Kerschberg, L.(Eds.), Lecture Notes in Computer
Science, vol. 1860, Springer, 2000.

APPENDIX A

LIST OF PROGRAMMING LANGUAGE GROUPS ON USENET

117

 1 comp.lang.ada
2 comp.lang.apl
3 comp.lang.asm.x86
4 comp.lang.asm370
5 comp.lang.awk
6 comp.lang.beta
7 comp.lang.c.moderated
8 comp.lang.clarion
9 comp.lang.clipper.visual-objects

10 comp.lang.clos
11 comp.lang.clu
12 comp.lang.cobol
13 comp.lang.dylan
14 comp.lang.eiffel
15 comp.lang.forth.mac
16 comp.lang.fortran
17 comp.lang.functional
18 comp.lang.basic.misc
19 comp.lang.pascal.mac
20 comp.lang.c++.leda
21 comp.lang.pascal.borland
22 comp.lang.pascal.delphi.advocacy
23 comp.lang.pascal.delphi.announce
24 comp.lang.pascal.delphi.components.misc
25 comp.lang.pascal.delphi.components.usage
26 comp.lang.perl.announce
27 comp.lang.perl.misc
28 comp.lang.perl.moderated
29 comp.lang.pop
30 comp.lang.postscript
31 comp.lang.prograph
32 comp.lang.prolog
33 comp.lang.rexx
34 comp.lang.ruby
35 comp.lang.sather
36 comp.lang.python.announce
37 comp.lang.scheme.c
38 comp.lang.mumps

39 comp.lang.oberon
40 comp.lang.smalltalk.advocacy
41 comp.lang.tcl.announce
42 comp.lang.visual.basic
43 comp.lang.basic.realbasic
44 comp.lang.basic.visual.3rdparty
45 comp.lang.basic.visual.announce
46 comp.lang.c++.moderated
47 comp.lang.java.help
48 comp.lang.java.javascript
49 comp.lang.java.machine
50 comp.lang.java.misc
51 comp.lang.java.programmer
52 comp.lang.java.security
53 comp.lang.java.setup
54 comp.lang.java.softwaretools
55 comp.lang.java.tech
56 comp.lang.lisp.x
57 comp.lang.ml
58 comp.lang.modula2
59 comp.lang.modula3
60 comp.lang.java.3d
61 comp.lang.java.advocacy
62 comp.lang.atUNIV
63 comp.lang.java.api
64 comp.lang.java.beans
65 comp.lang.java.corba
66 comp.lang.java.databases
67 comp.lang.java.developer
68 comp.lang.java.gui
69 comp.lang.lisp.franz
70 comp.lang.lisp.mcl
71 comp.lang.icon
72 comp.lang.idl
73 comp.lang.idl-pvwave
74 comp.lang.javascript
75 comp.lang.labview
76 comp.lang.limbo

118

77 comp.lang.logo
78 comp.lang.misc
79 comp.lang.pascal.ansi-iso
80 comp.lang.objective-c
81 comp.lang.php
82 comp.lang.pl1
83 comp.lang.pascal.misc
84 comp.lang.pascal.delphi.databases
85 comp.lang.pascal.delphi.misc
86 comp.lang.pascal.delphi.components.writing
87 comp.lang.perl.modules
88 comp.lang.perl.tk
89 comp.lang.sigplan
90 comp.lang.verilog
91 comp.lang.vhdl
92 comp.lang.vrml
93 comp.lang.scheme.scsh
94 comp.lang.smalltalk.dolphin
95 comp.lang.basic.visual.database
96 comp.lang.basic.visual.misc

BIOGRAPHICAL SKETCH

 Mujtaba Khambatti received an MCS from Arizona State University in 2000, and
a BE (computer) from Pune Institute of Computer Technology, University of Pune
(India) in 1999. While at Arizona State University, he has been involved in research
within the areas of: Peer-to-Peer Communities, Computing Communities, Dynamic
Coalitions, and Mobile Ad Hoc Networks.

Invited to join the Outstanding Student Honor Society in 2003 and the National Society
of Collegiate Scholars in 2002, he has also won student scholarships to attend two
international conferences. During his undergraduate education, he won 3 awards for his
senior-year project and was also honored with a silver medal for academic achievement
during his senior year.

At Arizona State University, Mujtaba has been the chair of the student chapter of the
IEEE Computer Society, the founder of the Windows Interest Group, the founding
president of the Engineering and Applied Sciences Graduate Student Association, and the
founding member of the Graduate and Professional Student Association. During his
student group activities, he co-chaired the IEEE CS Workshop on Research in Computer
Science and chaired the 1st Symposium of Research in Engineering and Applied Science.

His research interests include peer-to-peer systems, distributed operating systems, mobile
ad hoc networks, and security.

