Analysis of the JSP version of an ASP.NET application

Mujtaba Khambatti

1.Overview

The purpose of this study is to evaluate the performance of a simple JSP Application. The areas of interest are based entirely on the server engine that serves up the pages. We have ported an ASP.NET application to JSP. Our efforts involved comparing the performance of the JSP version using a JSP Web server on one side with the original ASP+ version and IIS on the other. Furthermore, we studied the architecture stack that drives the application’s run time execution. With these studies, we have attempted to explain the results of the performance comparisons. Although the tests are in favor of ASP.NET we need to verify our own results and also understand why we arrived at them. The report describes our findings and our conclusions. Our next goal is to mirror these tests with IBM Web Sphere 3.5 for a more complete comparison between ASP.NET and JSP technologies.

2.The ASP.NET Application

2.1 About the Application: An existing web application that used to be part of the old MSN pages has now been written in ASP.NET and C# with a heavy use of some COM objects. We chose the Early-bound, Managed code version of this application to be ported to JSP and Java. A 1 to 1 correspondence was maintained as much as we could in attempting to port this web application to JSP.

2.2 Structure: The structure of the application is as follows:

i. Default.jsp serves as the main JSP page

ii. global.jsa contains code to instantiate objects and perform initialization operations

iii. .inc files contain public method definitions and some scriptlets. These files are included in Default.jsp

iv. .class files are the compiled java classes that correspond to the C# or VB 7 classes that were used in the ASP.NET page

Figure 1: Structure of the JSP Web Application.

[image: image1.wmf]Number of Hits (120s)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

UniProc

 DualProc

 QuadProc

Processors

Hits

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

2.3 Further Reading: We faced numerous issues in the conversion and these are documented in the paper, Some Differences between ASP.NET and JSP.

3.Performance Comparisons

Most of the information regarding the test scenario and results has been documented in the paper,

Comparison between JSP and ASP.NET. The test environment is described in the appendix at the end of this paper. I have summarized the results below:

3.1 Number of Hits (over 120 seconds)

[image: image7.wmf]Time to last byte (ms)

0

500

1000

1500

2000

2500

3000

UniProc

DualProc

QuadProc

Processors

Time in milliseconds

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

The key points in the above graph is that as the number of processors increase, the number of Hits that can

be serviced by the JSP Server does not scale up as well as that of ASP.NET. The graph below is another

example of poor scalability. On the contrary, the ASP.NET version increases in corresponding values in both the graphs fairly linearly.

[image: image2.wmf]Time to last byte (ms)

0

500

1000

1500

2000

2500

3000

UniProc

DualProc

QuadProc

Processors

Time in milliseconds

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

3.2 Requests per second

[image: image3.wmf]Avg. % CPU Utilization

0

20

40

60

80

100

120

UniProc

 DualProc

 Quad Proc

Processors

% Processor Time

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

3.3 % CPU Utilization

The above graph indicates that the CPU is spending less time servicing clients as the processors increase. This means a lot of time is being spent in locks / wait / sleep. The poor scalability we think is due to some contention at the server. In the next section we attempt to analyze the reason for this behavior. The effect of a low number of Requests per second (see 3.2) is seen as a longer wait time for the user in the graph below.

3.4 Time to last byte in milliseconds (User wait time for entire page to load)

[image: image4.wmf]Requests per second

0

50

100

150

200

250

300

350

400

UniProc

DualProc

QuadProc

Processors

Rps

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

4. A Rough Application Profile

4.1 Motivation

At this stage we are faced with a number of results of the performance comparisons that conclusively show that ASP.NET out performs JSP Web Application by a very large margin. However, what we cannot state assertively is whether this is an indication of a poorly designed Web Server by Allaire or an architectural limitation of the JSP technology. If the former is true we should get better results with other competent Web Servers, while if the latter is true, then these results proves the superior design of ASP.NET technology. Therefore, there is a strong need to dig deeper to find the possible reasons for this poor performance on the part of the JSP version of the Application and attribute it to either of the two entities discussed.

4.2 VTune Data

We did a system profile using the Intel VTune Analyzer 4.5 over a single processor and quad-processor configuration. The results were indicative of a large amount of time spent in the System rather than in the runtime / VM. Following is the data we collected:

a. Single Processor:

Process: javaw.exe 97.23% of system (32.54 % in jvm.dll, 19.36 % in ntoskrnl.exe, …)

b. Quad-Processor:

Process: System Idle Process 53.26% of system (most in ntoskrnl.exe)

Process: javaw.exe 45.84% of system (10.52 % in jvm.dll, 13.43 % in ntoskrnl.exe, …)

While these numbers are merely indicative of the amount of time that the Runtime environment for the JSP engine spends in kernel mode, it does not point to the source of the scalability issue. The reason we could not dig deeper than this was because Allaire has not made public the symbol information for the jvm.dll that would otherwise show clearly where or why calls were being made into the kernel mode.

4.2 TrueTime Data
In addition to using the above tool, we looked at the Compuware NuMega 6.5 profiling tool that had capabilities of profiling a JSP Web Application. Initial tests were run on the single processor machine that was used to test the application. The results of those tests are summarized here because we were unsuccessful at performing the exact same tests over the network of machines in the PerfLab.

	strkeysa.java
	1.42%

	Compiled Servlet –Main
	1.36%

	Compiled Servlet - Initilization
	0.03%

	Other Libraries by Allaire, java, …
	62.54%

	Kernel32.dll
	12.40%

	Java.dll
	10.08%

	Jvm.dll
	7.66%

	Other system DLL’s
	4.51

The above table shows the distribution of percent time spent in the various modules that come into play during the servicing of client requests at the web server.

The take away points from this table are:

· Most of the time is being spent in Libraries owned by Allaire / java / sun that were being used to support the JRun execution.

· The time spent inside the code of the JSP version of the ASP.NET application was very small.

Furthermore, we even had the list actual functions within these modules that were being called often.

I have summarized them for this report below:

	Module
	Costliest Method / Function
	Main overhead of that Method / Function

	strkeysa.java
	strkeysa.LoadValues()
	java.io.BufferedReader.readLine()

	Compiled Servlet –Main
	ShowTheList()
	allaire.jrun.jsp.JRun.JspWriter.println()

	Compiled Servlet - Initilization
	DoLoadDictionaries()
	strkeysa.LoadValues()

	Other Libraries by Allaire, java, …
	sun.io.ByteToCharSingleByte.convert()

allaire.jrun.http.WebEndpoint.readHeader()
	

	Kernel32.dll
	
	

	Java.dll
	
	

	Jvm.dll
	
	

	Other system DLL’s
	
	

The top 20 functions are listed in the table below:

	Function Name
	% in Function
	% with Children
	Called

	VerifyClassCodes
	7.98
	15.93
	410

	sun.io.ByteToCharSingleByte.convert(byte[], int, int, char[], int, int)
	7.95
	9.98
	87

	GetFileAttributesA
	3.17
	3.17
	4,686

	allaire.jrun.http.WebEndpoint.readHeader()
	2.9
	3.77
	587

	CreateFileA
	2.41
	2.41
	1,612

	sun.io.ByteToCharSingleByte.getUnicode(int)
	2.03
	2.03
	529,799

	FindFirstFileA
	1.75
	1.75
	1,915

	allaire.jrun.util.PropertiesUtil.evaluate(java.lang.String)
	1.38
	2.28
	3,938

	RtlAllocateHeap
	1.36
	1.36
	61,629

	strkeysa.LoadValues(java.lang.String, int)
	1.32
	11.59
	15

	JVM_PrintStackTrace
	1.22
	1.38
	37

	java.io.BufferedReader.readLine(boolean)
	1.08
	11.35
	12,326

	allaire.jrun.logging.FileLogWriter.openFile(java.lang.String)
	0.95
	1.14
	71

	allaire.jrun.util.NoCaseContainer.find(java.lang.Object)
	0.9
	1.25
	11,758

	sun.misc.URLClassPath$FileLoader.getResource(java.lang.String, boolean)
	0.87
	2.21
	1,144

	java.io.BufferedReader.<init>(java.io.Reader, int)
	0.82
	0.87
	55

	java.net.URLClassLoader$1.run()
	0.81
	11.38
	1,061

	JVM_FillInStackTrace
	0.78
	0.79
	5,948

	ReadFile
	0.77
	0.77
	4,866

	IsDBCSLeadByte
	0.76
	0.76
	471,286

Lets take the first 3 functions / methods listed in the above table and see who calls them.

	Method / Function
	Top Child Methods / Functions
	Top Parent Methods / Functions

	VerifyClassCodes
	JVM_FindClassFromClassLoader
	1.JVM_GetClassConstructor

2.com.sun.xml.parser.XmlReader.createReader

3.…

	sun.io.ByteToCharSingleByte.convert
	sun.io.ByteToCharSingleByte.getUnicode
	java.io.InputStreamReader.convertInto

	GetFileAttributesA
	
	Java_java_io_Win32FileSystem_getBooleanAttributes

The reason I tabulated some of the functions above is to see whether we are truly spending our time in locks / wait / sleep like we initially assumed. On the contrary, we find that most time is spent by the Allaire JRun Server’s operations. The top functions are mostly readers or XML parsers or Class loaders and not locks. Just for curiosity and also to validate my statements in later sections, lets us take a look at the Child and Parent functions of the WaitForSingleObject functions that is in the Top 20 Kernel32.dll functions.

	Method / Function
	Top Child Methods / Functions
	Top Parent Methods / Functions

	WaitForSingleObject

% in Function: 0.30

% with Children: 0.30

Called: 7,392
	--none--
	1. JVM_MonitorWait called on ThreadStart or by allaire.jrun.scheduler.SchedulerService.createRunnable

2. Shlwapi.dll

3. JVM_FindLoadedClass

4. allaire.jrun.ServletOut.println

5. com.sun.xml.parser.Parser.class$

Apart from being such a low overhead in comparison with the Top 20 Functions in the table above, we see that most of the wait states are set by the JRun engine and not by the Web Application. After a cursory scan of the other API’s that were listed below WaitForSingleObject and (therefore of a lower impact) like, ReleaseSemaphore or InterlockedDecrement, I found that many of them are the result of new threads being serviced by the Web Server, or connections being made or closed and a fair amount of them were the result of XML parser libraries.

5.Commentary on the Analysis

5.1 Conclusion
We started off with no knowledge of how we performed in comparison with the JSP technology and also its supporting software. We had no benchmark of our runtime performance versus the performance of other vendors that were prominent in the market. An initial attempt was made in the direction of a JSP version of the ASP.NET App. After being code-reviewed twice, internally by the COM+ Runtime team and also by people from XSP, we felt more confident that we had maintained an almost 1:1 correspondence between the original and the new architectures. Further, we have been in communication with the engineers at Allaire through their technical support program that we were entitled to. They confirmed the necessity of the very few changes we had to make to successfully port the application. However, after the first test rounds, we got a bit concerned based on the results of the stress tests. There were 3 possible reasons: Allaire’s product was bad, our application did something to cause a contention of some sort, or the tests were faulty. The latter was immediately set aside after repeated tests revealed similar numbers. This paper started with an unbiased report of the test results and then drove towards trying to prove that the reason for poor performance was the application architecture / design. However, the profile of the application clearly contradicts this assumption with proof of an inefficient design of the Allaire product.

5.2 Why Allaire
So why did we choose Allaire. The JRun market share for 1999 was about 6% according to the Giga Information group’s report in 2000 Forecast for the EJB Application Server Market. This places it in the top 5 Server software in the market. While IBM’s Web Sphere also shared the top 5 position in 1999 and clearly is estimated to be the top contender for 2000, it is difficult to install. The availability of JRun, its technical support through telephone and easy of installation pointed in its favor. IBM requires a service contract for telephone support but do provide an email based support for the evaluation download that takes a couple of weeks to get responses from. Further, there seem to be issues that prevent correct execution of the 3.02 version of IBM server on Windows 2000 machines.

5.3 Where are we going with this: Future directions
The next steps include: testing the new version of IBM Web Sphere that is built for Windows 2000 with the ASP.NET App and see what numbers we get.

Appendix

1.Machines used in the test

	Machine Name
	Processor
	RAM
	Operating System

	Server
	Quad Intel Pentium P II 450 Xeon
	256 MB
	Windows 2000 Server

	Client 1
	Single Intel Pentium P II 450 Xeon
	128 MB
	Windows 2000

	Client 2
	Single Intel P II 400
	128 MB
	Windows 2000

	Client 3
	Single Intel P II 400
	128 MB
	Windows 2000

	Client 4
	Single Intel P II 400
	128 MB
	Windows 2000

2.Software used in the test

2.1 Microsoft Homer: We used the Microsoft Homer stress tool version 1.1.294.1 that provides the ability to simulate stress, test performance and do some capacity planning. The clients were installed with the Homer stress tool in order to automate the HTTP GET request. By configuring the stress tool for the desired number of clients we were able to make different observations.

More information about Homer is available from: http://homer.rte.microsoft.com/
2.2 Allaire JRun: On the server side we installed Allaire’s JRun 3.0 and the Microsoft IIS Web server 5.0. JRun allowed an ISAPI filter that would interact with IIS allowing JSP pages to be served up without any change to the IIS web server. We ran the test on the Enterprise Edition of the JRun server that is a complete J2EE application server for deploying scalable, mission-critical enterprise and e-commerce Java applications. JRun ships with the Sun JVM version 1.2 and IBM’s jikes compiler.

2.2 Internet Explorer: All machines have Internet Explorer 5.5.

3.Test Case settings

Warm up time: 60 seconds

Run time: 120 seconds

Cool down time: 15 seconds

Threads: 25x2, 50 x2

� EMBED Excel.Chart.8 \s ���

� EMBED Excel.Chart.8 \s ���

� EMBED Excel.Chart.8 \s ���

All this gets converted into a few .java files that are stored in {WEB-INF}\jsp

Same folder as .jsp

{WEB-INF}\classes

MyDateTime

StrKeys

Sectioncontentsfooter.inc

Producthome.inc

Browsersniff

Sectioncontentsheader.inc

Global.inc

Loaddictionaries

strkeysa.

Global.jsa

Default.jsp

Web Request

[image: image5.wmf]Requests per second

0

50

100

150

200

250

300

350

400

UniProc

DualProc

QuadProc

Processors

Rps

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

[image: image6.wmf]Avg. % CPU Utilization

0

20

40

60

80

100

120

UniProc

 DualProc

 Quad Proc

Processors

% Processor Time

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

_1097392650.xls
Chart3

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		Quad Proc		Quad Proc		Quad Proc		Quad Proc

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

Processors

% Processor Time

Avg. % CPU Utilization

100

99.73

100

99.72

83.4

98.91

85.54

98.75

49.91

93.72

51.86

92.85

Sheet1

				Hits				Rps				Pt %				TTLB (ms)				MC

		Threads		50		100		50		100		50		100		50		100		50		100

		JSP		2464		5342		46		44.52		100		100		1332.38		2601.21		9.7826		10.1078

		ASP+		19914		19406		165.94		161.71		99.73		99.72		299.41		616.31		2.7045		2.7749

		JSP		6182		6818		51.51		56.8		83.4		85.54		697.02		617.35		14.5719		13.5538

		ASP+		32124		31083		267.69		259.02		98.91		98.75		184.23		383.18		3.3254		3.4312

		JSP		6397		6608		53.31		55.05		49.91		51.86		579.55		565.14		16.852		16.9569

		ASP+		44478		43942		370.62		366.11		93.72		92.85		131.67		269.29		4.5517		4.565

		JSP: 50 threads

		JSP: 100 threads

		ASP+: 50 threads

		ASP+: 100 threads

		UniProc

		DualProc

		QuadProc

Sheet1

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		Quad Proc		Quad Proc		Quad Proc		Quad Proc

JSP: 50 threads

ASP+: 50 threads

JSP: 100 threads

ASP+: 100 threads

Processors

% Processor Time

Avg. % CPU Utilization

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_1097392699.xls
Chart4

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

Processors

Time in milliseconds

Time to last byte (ms)

1332.38

299.41

2601.21

616.31

697.02

184.23

617.35

383.18

579.55

131.67

565.14

269.29

Sheet1

				Hits				Rps				Pt %				TTLB (ms)				MC

		Threads		50		100		50		100		50		100		50		100		50		100

		JSP		2464		5342		46		44.52		100		100		1332.38		2601.21		9.7826		10.1078

		ASP+		19914		19406		165.94		161.71		99.73		99.72		299.41		616.31		2.7045		2.7749

		JSP		6182		6818		51.51		56.8		83.4		85.54		697.02		617.35		14.5719		13.5538

		ASP+		32124		31083		267.69		259.02		98.91		98.75		184.23		383.18		3.3254		3.4312

		JSP		6397		6608		53.31		55.05		49.91		51.86		579.55		565.14		16.852		16.9569

		ASP+		44478		43942		370.62		366.11		93.72		92.85		131.67		269.29		4.5517		4.565

		JSP: 50 threads

		ASP.NET: 50 threads

		JSP: 100 threads

		ASP.NET: 100 threads

		UniProc

		DualProc

		QuadProc

Sheet1

		

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

Processors

Time in milliseconds

Time to last byte (ms)

Sheet2

		

Sheet3

		

_1097392578.xls
Chart1

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

Processors

Hits

Number of Hits (120s)

2464

19914

5342

19406

6182

32124

6818

31083

6397

44478

6608

43942

Sheet1

				Hits				Rps				Pt %				TTLB (ms)				MC

		Threads		50		100		50		100		50		100		50		100		50		100

		JSP		2464		5342		46		44.52		100		100		1332.38		2601.21		9.7826		10.1078

		ASP+		19914		19406		165.94		161.71		99.73		99.72		299.41		616.31		2.7045		2.7749

		JSP		6182		6818		51.51		56.8		83.4		85.54		697.02		617.35		14.5719		13.5538

		ASP+		32124		31083		267.69		259.02		98.91		98.75		184.23		383.18		3.3254		3.4312

		JSP		6397		6608		53.31		55.05		49.91		51.86		579.55		565.14		16.852		16.9569

		ASP+		44478		43942		370.62		366.11		93.72		92.85		131.67		269.29		4.5517		4.565

Sheet1

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP+: 50 threads

JSP: 100 threads

ASP+: 100 threads

Processors

Hits

Number of Hits (120s)

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP+: 50 threads

JSP: 100 threads

ASP+: 100 threads

Processors

Rps

Requests per second

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

		

_1097392627.xls
Chart2

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP.NET: 50 threads

JSP: 100 threads

ASP.NET: 100 threads

Processors

Rps

Requests per second

46

165.94

44.52

161.71

51.51

267.69

56.8

259.02

53.31

370.62

55.05

366.11

Sheet1

				Hits				Rps				Pt %				TTLB (ms)				MC

		Threads		50		100		50		100		50		100		50		100		50		100

		JSP		2464		5342		46		44.52		100		100		1332.38		2601.21		9.7826		10.1078

		ASP+		19914		19406		165.94		161.71		99.73		99.72		299.41		616.31		2.7045		2.7749

		JSP		6182		6818		51.51		56.8		83.4		85.54		697.02		617.35		14.5719		13.5538

		ASP+		32124		31083		267.69		259.02		98.91		98.75		184.23		383.18		3.3254		3.4312

		JSP		6397		6608		53.31		55.05		49.91		51.86		579.55		565.14		16.852		16.9569

		ASP+		44478		43942		370.62		366.11		93.72		92.85		131.67		269.29		4.5517		4.565

Sheet1

		UniProc		UniProc		UniProc		UniProc

		DualProc		DualProc		DualProc		DualProc

		QuadProc		QuadProc		QuadProc		QuadProc

JSP: 50 threads

ASP+: 50 threads

JSP: 100 threads

ASP+: 100 threads

Processors

Rps

Requests per second

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

